Effect of different heat treatments of inoculum on the production of hydrogen and volatile fatty acids by dark fermentation of sugarcane vinasse

Author(s):  
Flaviane Eva Magrini ◽  
Gabriela Machado de Almeida ◽  
Denis da Maia Soares ◽  
Laura Fuentes ◽  
Claudia Ecthebehere ◽  
...  
2019 ◽  
Vol 44 (44) ◽  
pp. 24110-24125 ◽  
Author(s):  
Tobias Weide ◽  
Elmar Brügging ◽  
Christof Wetter ◽  
Antonio Ierardi ◽  
Marc Wichern

Author(s):  
Eduardo Lucena Cavalcante de Amorim ◽  
Leandro Takano Sader ◽  
Lucas Rodrigues Ramos ◽  
Edson Luiz Silva

2015 ◽  
Vol 193 ◽  
pp. 488-497 ◽  
Author(s):  
Ao Xia ◽  
Amita Jacob ◽  
Christiane Herrmann ◽  
Muhammad Rizwan Tabassum ◽  
Jerry D. Murphy

2021 ◽  
Vol 11 (9) ◽  
pp. 4099
Author(s):  
Dimitris Zagklis ◽  
Marina Papadionysiou ◽  
Konstantina Tsigkou ◽  
Panagiota Tsafrakidou ◽  
Constantina Zafiri ◽  
...  

Used disposable nappies constitute a waste stream that has no established treatment method. The purpose of this study was the assessment of the dark fermentation of used disposable nappies and expired food products under different pH values. The biodegradable part of the used disposable nappies was recovered and co-fermented with expired food products originating from supermarkets. The recoverable economic potential of the process was examined for different volatile fatty acids exploitation schemes and process pH values. The process pH strongly affected the products, with optimum hydrogen production at pH 6 (4.05 NLH2/Lreactor), while the amount of produced volatile fatty acids was maximized at pH 7 (13.44 g/L). Hydrogen production was observed at pH as low as pH 4.5 (2.66 NLH2/Lreactor). The recoverable economic potential was maximized at two different pH values, with the first being pH 4.5 with minimum NaOH addition requirements (181, 138, and 296 EUR/ton VS of substrate for valorization of volatile fatty acids through microbial fuel cell, biodiesel production, and anaerobic digestion, respectively) and the second being pH 6, where the hydrogen production was maximized with the simultaneous production of high amounts of volatile fatty acids (191, 142, and 339 EUR/ton VS of substrate respectively).


2020 ◽  
Vol 11 (10) ◽  
pp. 5239-5246 ◽  
Author(s):  
Edoardo Righetti ◽  
Simone Nortilli ◽  
Francesco Fatone ◽  
Nicola Frison ◽  
David Bolzonella

Abstract A pilot scale biorefinery platform for the treatment of agro-waste and the production of hydrogen, methane and volatile fatty acids was studied in real environment. The system adopted was a two stage anaerobic process where hydrogen and volatile fatty acids were produced in the first phase (fermentation) and methane in the second one (digestion). The study demonstrated the possibility to produce a biogas composed by hydrogen and methane (10% and 55%, respectively) while recovering volatile fatty acids. The yield for acids production was equivalent to 0.13 gVFA/gTVS (as COD) with acetate and butyrate as dominant observed species. Graphic Abstract


Sign in / Sign up

Export Citation Format

Share Document