scholarly journals Effect of shipping boxes, attendant bees, and temperature on honey bee queen sperm quality (Apis mellifera)

Apidologie ◽  
2020 ◽  
Vol 51 (5) ◽  
pp. 724-735
Author(s):  
Andrée Rousseau ◽  
Émile Houle ◽  
Pierre Giovenazzo
2015 ◽  
Vol 147 (6) ◽  
pp. 702-711 ◽  
Author(s):  
Andrée Rousseau ◽  
Valérie Fournier ◽  
Pierre Giovenazzo

AbstractA honey bee (Apis mellifera Linnaeus; Hymenoptera: Apidae) queen’s life expectancy is strongly dependent on the number of sperm she obtains by mating with drones during nuptial flights. Unexplained replacement of queens by the colony and young queens showing sperm depletions have been reported in North America, and reduced drone fertility has been a suspected cause. The aim of this study was to evaluate drone reproductive qualities during the queen-rearing season, from May to August. Drones from two different genetic lines were reared six times during the 2012 beekeeping season at our research centre in Québec (Canada). Semen volume as well as sperm number and viability were assessed at the ages of 14, 21, and 35 days. Results showed (1) a greater proportion of older drones with semen at the tip of the genitalia after eversion; (2) an influence of rearing date on semen production; and (3) no influence of drone genetic line, age or time of breeding on sperm viability. These results highlight the necessity of better understanding drone rearing and how it can be improved to ensure optimum honey-bee queen mating.


1991 ◽  
Vol 29 (5) ◽  
pp. 321-332 ◽  
Author(s):  
Ken Naumann ◽  
Mark L. Winston ◽  
Keith N. Slessor ◽  
Glenn D. Prestwich ◽  
Francis X. Webster

2011 ◽  
Vol 106 (3) ◽  
pp. 380-385 ◽  
Author(s):  
Cédric Alaux ◽  
Morgane Folschweiller ◽  
Cynthia McDonnell ◽  
Dominique Beslay ◽  
Marianne Cousin ◽  
...  

Insects ◽  
2020 ◽  
Vol 11 (8) ◽  
pp. 544 ◽  
Author(s):  
Małgorzata Bieńkowska ◽  
Aleksandra Łoś ◽  
Paweł Węgrzynowicz

We conducted a survey on honey bee (Apis mellifera) queen management. Data were collected every year from 1980 to 2018. In total, 2964 questionnaires were collected from all over Poland. We examined the trends by decade timeslot, apiary size, and geographical location. Regardless of the decade and the size of the apiary, on average, above 90% of Polish beekeepers replace old queens with new ones in their colonies. In general, during the observed period, beekeepers replaced almost 52% of their queens, 21% of which were purchased. In the last decade, there was an upward trend in the percentage of beekeepers replacing queens throughout the country. The involvement of purchased queens in colony management is associated with the size of the apiary, and it significantly grows with the number of colonies in the apiary. The percentage of purchased queens went up in all the voivodeships over time. Research and education in this area are needed in order to track the trends and further improve Polish beekeepers’ practices.


2021 ◽  
Vol 9 ◽  
Author(s):  
Selina Bruckner ◽  
Lars Straub ◽  
Peter Neumann ◽  
Geoffrey R. Williams

Pressures from multiple, sometimes interacting, stressors can have negative consequences to important ecosystem-service providing species like the western honey bee (Apis mellifera). The introduced parasite Varroa destructor and the neonicotinoid class of insecticides each represent important, nearly ubiquitous biotic and abiotic stressors to honey bees, respectively. Previous research demonstrated that they can synergistically interact to negatively affect non-reproductive honey bee female workers, but no data exist on how concurrent exposure may affect reproductive honey bee males (drones). This is important, given that the health of reproductive females (queens), possibly because of poor mating, is frequently cited as a major driver of honey bee colony loss. To address this, known age cohorts of drones were obtained from 12 honey bee colonies—seven were exposed to field-relevant concentrations of two neonicotinoids (4.5 ppb thiamethoxam and 1.5 ppb clothianidin) during development via supplementary pollen patties; five colonies received patties not spiked with neonicotinoids. Artificially emerged drones were assessed for natural V. destructor infestation, weighed, and then allocated to the following treatment groups: 1. Control, 2. V. destructor only, 3. Neonicotinoid only, and 4. Combined (both mites and neonicotinoid). Adult drones were maintained in laboratory cages alongside attendant workers (1 drone: 2 worker ratio) until they have reached sexual maturity after 14 days so sperm concentration and viability could be assessed. The data suggest that V. destructor and neonicotinoids interacted synergistically to negatively affect adult drone survival, but that they interacted antagonistically on emergence mass. Although sample sizes were too low to assess the effects of V. destructor and combined exposure on sperm quality, we observed no influence of neonicotinoids on sperm concentration or viability. Our findings highlight the diverse effects of concurrent exposure to stressors on honey bees, and suggest that V. destructor and neonicotinoids can severely affect the number of sexually mature adult drones available for mating.


2021 ◽  
Author(s):  
Sarah E Aamidor ◽  
Carlos Júnior Cardoso ◽  
Januar Harianto ◽  
Cameron J Nowell ◽  
Louise Cole ◽  
...  

AbstractIn the honey bee (Apis mellifera), queen and worker castes originate from identical genetic templates but develop into different phenotypes. Queens lay up to 2,000 eggs daily whereas workers are sterile in the queen’s presence. Periodically queens stop laying; during swarming, when resources are scarce in winter and when they are confined to a cage by beekeepers. We used confocal microscopy and gene expression assays to investigate the control of oogenesis in honey bee queen ovaries. We show that queens use different combination of ‘checkpoints’ to regulate oogenesis compared to honey bee workers and other insect species. However, both queen and worker castes use the same programmed cell death pathways to terminate oocyte development at their caste-specific checkpoints. Our results also suggest that the termination of oogenesis in queens is driven by nutritional stress. Thus, queens may regulate oogenesis via the same regulatory pathways that were utilised by ancestral solitary species but have adjusted physiological checkpoints to suit their highly-derived life history.Summary statementHoney bee queens regulate oogenesis using a different combination of ‘checkpoints’ to workers, but both castes use the same molecular pathways.


BMC Genomics ◽  
2008 ◽  
Vol 9 (1) ◽  
pp. 232 ◽  
Author(s):  
Sarah D Kocher ◽  
Freddie-Jeanne Richard ◽  
David R Tarpy ◽  
Christina M Grozinger

2021 ◽  
Vol 9 ◽  
Author(s):  
Elizabeth M. Walsh ◽  
Omar Khan ◽  
John Grunseich ◽  
Anjel M. Helms ◽  
Nancy H. Ing ◽  
...  

Recent work demonstrated that honey bee (Apis mellifera L.) queens reared in pesticide-laden beeswax exhibit significant changes in the composition of the chemicals produced by their mandibular glands including those that comprise queen mandibular pheromone, which is a critical signal used in mating as well as queen tending behavior. For the present study, we hypothesized that pesticide exposure during development would alter other queen-produced chemicals, including brood pheromone in immature queens, thus resulting in differential feeding of queen larvae by nurse workers, ultimately impacting adult queen morphology. We tested these hypotheses by rearing queens in beeswax containing field-relevant concentrations of (1) a combination of tau-fluvalinate and coumaphos, (2) amitraz, or (3) a combination of chlorothalonil and chlorpyrifos. These pesticides are ubiquitous in most commercial beekeeping operations in North America. We observed nurse feeding rates of queen larvae grafted into pesticide-laden beeswax, analyzed the chemical composition of larval queen pheromones and measured morphological markers in adult queens. Neither the nurse feeding rates, nor the chemical profiles of immature queen pheromones, differed significantly between queens reared in pesticide-laden wax compared to queens reared in pesticide-free wax. Moreover, pesticide exposure during development did not cause virgin or mated adult queens to exhibit differences in morphological markers (i.e., body weight, head width, or thorax width). These results were unexpected given our previous research and indicate that future work is needed to fully understand how pesticide exposure during development affects honey bee queen physiology, as well as how various adult queen quality metrics relate to each other.


Sign in / Sign up

Export Citation Format

Share Document