Preparation and characterization of carboxylated styrene butadiene rubber (XSBR)/multiwall carbon nanotubes (MWCNTs) nanocomposites

2012 ◽  
Vol 21 (11) ◽  
pp. 809-820 ◽  
Author(s):  
Mohammad Alimardani ◽  
Foroud Abbassi-Sourki ◽  
Gholam Reza Bakhshandeh
1970 ◽  
Vol 43 (6) ◽  
pp. 1332-1339 ◽  
Author(s):  
J. K. Clark ◽  
R. A. Scott

Abstract Dissolution of sulfur-cured, carbon black-loaded copolymers and their blends with cis-1,4-polybutadiene (PBD) are brought about by boiling with o-dichlorobenzene which contains a small amount of 2,2′-dibenzamidodiphenyl disulfide. The resulting slurries are subjected to a sequence of separations which include high-speed centrifugation to remove solids, and solvent precipitation followed by filtration to isolate the precipitates. The precipitates are washed with solvent to remove soluble organic materials followed by carbon disulfide washing to dissolve the polymers. Cast films of the polymers are obtained by evaporating the carbon disulfide washings onto sodium chloride discs. The infrared spectra of the cast films of these preparations are very similar to those of their respective polymers prior to loading and curing. Calculations for relative concentrations of bound styrene and PBD micro-structures permit nominal identification of the kinds of styrene-butadiene rubber and the amounts of cis-1,4-PBD used in a cured rubber formulation. Absorption bands used are near 3.35 μ for cis-1,4-PBD, 6.65 μ for bound styrene, 10.35 μ for trans-1,4-PBD; and 11.0 μ for vinyl-1,2-PBD. Efforts are being made to improve the data by using a grating infrared instrument and also to extend the calibrations to include other rubber blends.


2013 ◽  
Vol 130 (2) ◽  
pp. 1308-1312 ◽  
Author(s):  
Suo Xiao ◽  
Jianxiang Feng ◽  
Jin Zhu ◽  
Xi Wang ◽  
Chunwang Yi ◽  
...  

e-Polymers ◽  
2011 ◽  
Vol 11 (1) ◽  
Author(s):  
Sugata Chakraborty ◽  
Saptrashi Kar ◽  
Saikat Dasgupta ◽  
Rabindra Mukhopadhyay ◽  
Samar Bandyopadhyay

AbstractPresent study describes the preparation and characterization of crystal violet modified-montmorillonite clay nanocomposites by latex blending technique. Coagulation of the latex-clay slurry produced nanocomposites master batch. The master batch was compounded with Styrene Butadiene rubber (SBR). WAXD and TEM provided the evidences of formation of nanocomposite. Remarkable improvements in the mechanical properties were found by addition of small amount of modified clay.


Sign in / Sign up

Export Citation Format

Share Document