cast films
Recently Published Documents


TOTAL DOCUMENTS

307
(FIVE YEARS 25)

H-INDEX

43
(FIVE YEARS 4)

Micromachines ◽  
2021 ◽  
Vol 12 (7) ◽  
pp. 817
Author(s):  
Baji Shaik ◽  
Mujeeb Khan ◽  
Mohammed Rafi Shaik ◽  
Mohammed A.F. Sharaf ◽  
Doumbia Sekou ◽  
...  

A-π-D-π-A-based small molecules 6,6′-((thiophene-2,5-diylbis(ethyne-2,1-diyl))bis(thiophene-5,2-diyl))bis(2,5-bis(2-ethylhexyl)-3-(thiophen-2-yl)-2,5-dihydropyrrolo[3,4-c]pyrrole-1,4-dione) (TDPP-T) and 6,6′-(((2,3-dihydrothieno[3,4-b][1,4]dioxine-5,7-diyl)bis(ethyne-2,1-diyl))bis(thiophene-5,2-diyl))bis(2,5-bis(2-ethylhexyl)-3-(thiophen-2-yl)-2,5-dihydropyrrolo[3,4-c]pyrrole-1,4-dione) (TDPP-EDOT) have been designed and synthesized. The diketopyrrolopyrrole acts as an electron acceptor, while the thiophene or 3,4-ethylenedioxythiophene acts as an electron donor. The donor–acceptor groups are connected by an ethynyl bridge to further enhance the conjugation. The optoelectronics, electrochemical, and thermal properties have been investigated. Organic thin film transistor (OTFT) devices prepared from TDPP-T and TDPP-EDOT have shown p-type mobility. In as cast films, TDPP-T and TDPP-EDOT have shown a hole mobility of 5.44 × 10−6 cm2 V−1 s−1 and 4.13 × 10−6 cm2 V−1 s−1, respectively. The increase in the mobility of TDPP-T and TDPP-EDOT OTFT devices was observed after annealing at 150 °C, after which the mobilities were 3.11 × 10−4 cm2 V−1 s−1 and 2.63 × 10−4 cm2 V−1 s−1, respectively.


Polymer ◽  
2021 ◽  
pp. 123935
Author(s):  
Baku Nagendra ◽  
Manohar Golla ◽  
Christophe Daniel ◽  
Paola Rizzo ◽  
Gaetano Guerra

Electrochem ◽  
2021 ◽  
Vol 2 (1) ◽  
pp. 83-94
Author(s):  
Elisabetta Petrucci ◽  
Monica Orsini ◽  
Francesco Porcelli ◽  
Serena De Santis ◽  
Giovanni Sotgiu

Ruthenium oxide (RuOx) thin films were spin coated by thermal decomposition of alcoholic solutions of RuCl3 on titanium foils and subsequently annealed at 400 °C. The effect of spin coating parameters, such as spinning speed, volume, and molar concentration of the precursor as well as the number of deposits, on the morphology and electrochemical performance of the electrodes was investigated. The films were characterized by scanning electron microscopy (SEM) equipped with energy-dispersive X-ray spectroscopy (EDX), cyclic voltammetry (CV) with and without chloride, and linear sweep voltammetry (LSV). The prepared materials were also compared to drop cast films and spin-coated films obtained by adopting low-temperature intermediate treatments. The results indicate that even dispersion of the oxide layer was always achieved. By tuning the spin coating parameters, it was possible to obtain different electrochemical responses. The most influential parameter is the number of deposits, while the concentration of the precursor salt and the rotation speed were less relevant, under the adopted conditions.


Nanomaterials ◽  
2021 ◽  
Vol 11 (1) ◽  
pp. 84
Author(s):  
John Jackson ◽  
David Plackett ◽  
Eric Hsu ◽  
Dirk Lange ◽  
Robin Evans ◽  
...  

Introduction: We previously described the manufacture and characterization of hydrogel forming, thin film, anti-infective wound dressings made from Poly Vinyl Alcohol (PVA) and silver nanoparticles, crosslinked by heat. However, these films were designed to be inexpensive for simple manufacture locally in Africa. In this new study, we have further developed PVA dressings by manufacturing films or electrospun membranes, made from blends of PVA with different degrees of hydrolyzation, that contain silver salts and degrade in a controlled manner to release silver in a sustained manner over 12 days. Methods: Films were solvent cast as films or electrospun into nanofibre membranes using blends of 99 and 88% hydrolyzed PVA, containing 1% w/w silver sulphadiazine, carbonate, sulphate, or acetate salts. Dissolution was measured as weight loss in water and silver release was measured using inductively coupled plasma (ICP) analysis. Results: Cast films generally stayed intact at PVA 99: PVA 88% ratios greater than 40:60 whereas electrospun membranes needed ratios greater than 10:90. Films (40:60 blend ratio) and membranes (10:90) all released silver salts in a sustained fashion but incompletely and to different extents. Electrospun membranes gave more linear release patterns in the 2–12 day period and all salts released well. Conclusion: Blended PVA cast films offer improved control over hydrogel dissolution and silver release without the need for high temperature crosslinking. Blended PVA electrospun membranes further improve membrane dissolution control and silver release profiles. These blended PVA films and membranes offer improved inexpensive systems for the manufacture of long lasting anti-infective hydrogel wound dressings.


Sign in / Sign up

Export Citation Format

Share Document