Anchoring of nickel (II) kojic acid in functionalized Si-MCM‐41 matrix: a effective nanocatalyst for the catalytic clean synthesis of dihydropyrano[3,2-b]chromenediones

Author(s):  
Khadijeh Ojaghi Aghbash ◽  
Nader Noroozi Pesyan
Keyword(s):  
ACS Omega ◽  
2020 ◽  
Vol 5 (35) ◽  
pp. 22099-22108
Author(s):  
Khadijeh Ojaghi Aghbash ◽  
Nader Noroozi Pesyan ◽  
Hana Batmani

2019 ◽  
Vol 9 (3) ◽  
pp. 811-821 ◽  
Author(s):  
Zhao-Meng Wang ◽  
Li-Juan Liu ◽  
Bo Xiang ◽  
Yue Wang ◽  
Ya-Jing Lyu ◽  
...  

The catalytic activity decreases as –(SiO)3Mo(OH)(O) > –(SiO)2Mo(O)2 > –(O)4–MoO.


2000 ◽  
Vol 10 (PR7) ◽  
pp. Pr7-99-Pr7-102 ◽  
Author(s):  
G. Dosseh ◽  
D. Morineau ◽  
C. Alba-Simionesco
Keyword(s):  

2000 ◽  
Vol 10 (PR7) ◽  
pp. Pr7-95-Pr7-98 ◽  
Author(s):  
D. Morineau ◽  
F. Casas ◽  
C. Alba-Simionesco ◽  
A. Grosman ◽  
M.-C. Bellissent-Funel ◽  
...  

2013 ◽  
Vol 33 (10) ◽  
pp. 1696-1705
Author(s):  
Zhen LIU ◽  
Gang FENG ◽  
Chunyan PAN ◽  
Wang LI ◽  
Ping CHEN ◽  
...  
Keyword(s):  

2020 ◽  
Vol 12 (3) ◽  
pp. 03014-1-03014-5
Author(s):  
Fedir Ivashchyshyn ◽  
◽  
Dariusz Calus ◽  
Anna Pidluzhna ◽  
Piotr Chabecki ◽  
...  
Keyword(s):  

2020 ◽  
Vol 24 (4) ◽  
pp. 354-401 ◽  
Author(s):  
Keisham S. Singh

Marine natural products (MNPs) containing pyrone rings have been isolated from numerous marine organisms, and also produced by marine fungi and bacteria, particularly, actinomycetes. They constitute a versatile structure unit of bioactive natural products that exhibit various biological activities such as antibiotic, antifungal, cytotoxic, neurotoxic, phytotoxic and anti-tyrosinase. The two structure isomers of pyrone ring are γ- pyrone and α-pyrone. In terms of chemical motif, γ-pyrone is the vinologous form of α- pyrone which possesses a lactone ring. Actinomycete bacteria are responsible for the production of several α-pyrone compounds such as elijopyrones A-D, salinipyrones and violapyrones etc. to name a few. A class of pyrone metabolites, polypropionates which have fascinating carbon skeleton, is primarily produced by marine molluscs. Interestingly, some of the pyrone polytketides which are found in cone snails are actually synthesized by actinomycete bacteria. Several pyrone derivatives have been obtained from marine fungi such as Aspergillums flavus, Altenaria sp., etc. The γ-pyrone derivative namely, kojic acid obtained from Aspergillus fungus has high commercial demand and finds various applications. Kojic acid and its derivative displayed inhibition of tyrosinase activity and, it is also extensively used as a ligand in coordination chemistry. Owing to their commercial and biological significance, the synthesis of pyrone containing compounds has been given attention over the past years. Few reviews on the total synthesis of pyrone containing natural products namely, polypropionate metabolites have been reported. However, these reviews skipped other marine pyrone metabolites and also omitted discussion on isolation and detailed biological activities. This review presents a brief account of the isolation of marine metabolites containing a pyrone ring and their reported bio-activities. Further, the review covers the synthesis of marine pyrone metabolites such as cyercene-A, placidenes, onchitriol-I, onchitriol-II, crispatene, photodeoxytrichidione, (-) membrenone-C, lihualide-B, macrocyclic enol ethers and auripyrones-A & B.


Sign in / Sign up

Export Citation Format

Share Document