bioactive natural products
Recently Published Documents


TOTAL DOCUMENTS

692
(FIVE YEARS 208)

H-INDEX

45
(FIVE YEARS 9)

2022 ◽  
Author(s):  
Freya Taday ◽  
Ryan Cairns ◽  
Adam O'Connell ◽  
Elaine O'Reilly

There is continued interest in developing cascade processes for the synthesis of key chiral building blocks and bioactive natural products (or analogues). Here, we report a hybrid bio-organocatalytic cascade for...


2021 ◽  
Vol 8 (1) ◽  
pp. 40
Author(s):  
Zhiyang Fu ◽  
Yuanyuan Liu ◽  
Meijie Xu ◽  
Xiaojun Yao ◽  
Hong Wang ◽  
...  

Endophytic fungi are one of prolific sources of bioactive natural products with potential application in biomedicine and agriculture. In our continuous search for antimicrobial secondary metabolites from Fusarium oxysporum R1 associated with traditional Chinese medicinal plant Rumex madaio Makino using one strain many compounds (OSMAC) strategy, two diastereomeric polyketides neovasifuranones A (3) and B (4) were obtained from its solid rice medium together with N-(2-phenylethyl)acetamide (1), 1-(3-hydroxy-2-methoxyphenyl)-ethanone (2) and 1,2-seco-trypacidin (5). Their planar structures were unambiguously determined using 1D NMR and MS spectroscopy techniques as well as comparison with the literature data. By a combination of the modified Mosher’s reactions and chiroptical methods using time-dependent density functional theory-electronic circular dichroism (TDDFT-ECD) and optical rotatory dispersion (ORD), the absolute configurations of compounds 3 and 4 are firstly confirmed and, respectively, characterized as (4S,7S,8R), (4S,7S,8S). Bioassay results indicate that these metabolites 1–5 exhibit weak inhibitory effect on Helicobacter pylori 159 with MIC values of ≥16 μg/mL. An in-depth discussion for enhancement of fungal metabolite diversity is also proposed in this work.


2021 ◽  
Vol 10 (1) ◽  
pp. 30
Author(s):  
Roman Makitrynskyy ◽  
Olga Tsypik ◽  
Andreas Bechthold

Streptomycetes are soil-dwelling multicellular microorganisms famous for their unprecedented ability to synthesize numerous bioactive natural products (NPs). In addition to their rich arsenal of secondary metabolites, Streptomyces are characterized by complex morphological differentiation. Mostly, industrial production of NPs is done by submerged fermentation, where streptomycetes grow as a vegetative mycelium forming pellets. Often, suboptimal growth peculiarities are the major bottleneck for industrial exploitation. In this work, we employed genetic engineering approaches to improve the production of moenomycins (Mm) in Streptomyces ghanaensis, the only known natural direct inhibitors of bacterial peptidoglycan glycosyltransferses. We showed that in vivo elimination of binding sites for the pleiotropic regulator AdpA in the oriC region strongly influences growth and positively correlates with Mm accumulation. Additionally, a marker- and “scar”-less deletion of moeH5, encoding an amidotransferase from the Mm gene cluster, significantly narrows down the Mm production spectrum. Strikingly, antibiotic titers were strongly enhanced by the elimination of the pleiotropic regulatory gene wblA, involved in the late steps of morphogenesis. Altogether, we generated Mm overproducers with optimized growth parameters, which are useful for further genome engineering and chemoenzymatic generation of novel Mm derivatives. Analogously, such a scheme can be applied to other Streptomyces spp.


2021 ◽  
Vol 3 (12) ◽  
Author(s):  
Hong Gao ◽  
Margaret C. M. Smith

Some major producers of useful bioactive natural products belong to the genus Streptomyces or related actinobacteria. Genetic engineering of these bacteria and the pathways that synthesize their valuable products often relies on serine integrases. To further improve the flexibility and efficiency of genome engineering via serine integrases, we explored whether multiple integrating vectors encoding orthogonally active serine integrases can be introduced simultaneously into Streptomyces recipients via conjugal transfer and integration. Pairwise combinations of Escherichia coli donors containing vectors encoding orthogonal serine integrases were used in each conjugation. Using donors containing plasmids (of various sizes) encoding either the φBT1 or the φC31 integration systems, we observed reproducible simultaneous plasmid integration into Streptomyces coelicolor and Streptomyces lividans at moderate frequencies after conjugation. This work demonstrated how site-specific recombination based on orthogonal serine integrases can save researchers time in genome engineering experiments in Streptomyces .


Molecules ◽  
2021 ◽  
Vol 26 (23) ◽  
pp. 7304
Author(s):  
Tessa B. Moyer ◽  
Amanda M. Brechbill ◽  
Leslie M. Hicks

Traditional medicinal plants contain a variety of bioactive natural products including cysteine-rich (Cys-rich) antimicrobial peptides (AMPs). Cys-rich AMPs are often crosslinked by multiple disulfide bonds which increase their resistance to chemical and enzymatic degradation. However, this class of molecules is relatively underexplored. Herein, in silico analysis predicted 80–100 Cys-rich AMPs per species from three edible traditional medicinal plants: Linum usitatissimum (flax), Trifolium pratense (red clover), and Sesamum indicum (sesame). Bottom-up proteomic analysis of seed peptide extracts revealed direct evidence for the translation of 3–10 Cys-rich AMPs per species, including lipid transfer proteins, defensins, α-hairpinins, and snakins. Negative activity revealed by antibacterial screening highlights the importance of employing a multi-pronged approach for AMP discovery. Further, this study demonstrates that flax, red clover, and sesame are promising sources for further AMP discovery and characterization.


2021 ◽  
Vol 12 ◽  
Author(s):  
Jae Sik Yu ◽  
Ji-Hoon Kim ◽  
Luay Rashan ◽  
Inseo Kim ◽  
Wonsik Lee ◽  
...  

Antibiotic-resistant infections are a growing problem; to combat multi-drug resistant bacterial infections, antibiotics with novel mechanisms of action are needed. Identification of potent bioactive natural products is an attractive avenue for developing novel therapeutic strategies against bacterial infections. As part of our ongoing research to explore bioactive natural products from diverse resources, we investigated the antimicrobial compounds from Woodfordia uniflora, a flowering shrub unique to the Dhofar region of Oman. The plant has been used as a remedy for skin infections in Oman. However, to date, no study has examined the antimicrobial compounds in W. uniflora. Phytochemical analysis of the methanolic extract of W. uniflora leaves in combination with LC/MS-based analysis allowed us to isolate and identify four flavonoid-type analogs (1–4), procyanidin B3-3-O-gallate (1), rhamnetin 3-O-(6″-galloyl)-β-D-glucopyranoside (2), rhamnetin 3-O-α-L-rhamnopyranoside (3), and quercetin 3-O-(6″-galloyl)-β-D-glucopyranoside (4). The isolates have a novel mechanism of action; the compounds inhibit biofilm formation in methicillin-resistant Staphylococcus aureus (MRSA) and synergize with methicillin. Our metabolite analysis revealed that this synergizing activity by compounds was achieved by remodeling metabolism including central carbon metabolism and glutamine biosynthesis that resulted in abnormal cell formation and reduction in biofilm formation of MRSA. Taken together, these findings provide experimental evidence that rhamnetin 3-O-(6″-galloyl)-β-D-glucopyranoside (2) and quercetin 3-O-(6″-galloyl)-β-D-glucopyranoside (4) can be considered as potential therapeutic agents for the treatment of methicillin-resistant S. aureus-associated diseases.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Wei Li Thong ◽  
Yingxin Zhang ◽  
Ying Zhuo ◽  
Katherine J. Robins ◽  
Joanna K. Fyans ◽  
...  

AbstractRe-engineering biosynthetic assembly lines, including nonribosomal peptide synthetases (NRPS) and related megasynthase enzymes, is a powerful route to new antibiotics and other bioactive natural products that are too complex for chemical synthesis. However, engineering megasynthases is very challenging using current methods. Here, we describe how CRISPR-Cas9 gene editing can be exploited to rapidly engineer one of the most complex megasynthase assembly lines in nature, the 2.0 MDa NRPS enzymes that deliver the lipopeptide antibiotic enduracidin. Gene editing was used to exchange subdomains within the NRPS, altering substrate selectivity, leading to ten new lipopeptide variants in good yields. In contrast, attempts to engineer the same NRPS using a conventional homologous recombination-mediated gene knockout and complementation approach resulted in only traces of new enduracidin variants. In addition to exchanging subdomains within the enduracidin NRPS, subdomains from a range of NRPS enzymes of diverse bacterial origins were also successfully utilized.


Marine Drugs ◽  
2021 ◽  
Vol 19 (11) ◽  
pp. 636
Author(s):  
Olga Morarescu ◽  
Marina Grinco ◽  
Veaceslav Kulciţki ◽  
Sergiu Shova ◽  
Nicon Ungur

Scalarane sesterterpenoids emerged as interesting bioactive natural products which were isolated extensively from marine sponges and shell-less mollusks. Some representatives were also reported recently from superior plants. Many scalarane sesterterpenoids displayed a wide spectrum of valuable properties, such as antifeedant, antimicrobial, antifungal, antitubercular, antitumor, anti-HIV properties, cytotoxicity and stimulation of nerve growth factor synthesis, as well as anti-inflammatory activity. Due to their important biological properties, many efforts have been undertaken towards the chemical synthesis of natural scalaranes. The main synthetic challenges are connected to their complex polycyclic framework, chiral centers and different functional groups, in particular the oxygenated functional groups at the C-12 position, which are prerequisites of the biological activity of many investigated scalaranes. The current work addresses this problem and the synthesis of 17-oxo-20-norscalaran-12α,19-O-lactone is described. It was performed via the 12α-hydroxy-ent-isocopal-13(14)-en-15-al obtained from (-)-sclareol as an accessible starting material. The tetracyclic lactone framework was built following an addition strategy, which includes the intramolecular Michael addition of a diterpenic acetoacetic ester and an intramolecular aldol condensation reaction as key synthetic steps. The structure and stereochemistry of the target compound have been proven by X-Ray diffraction method.


2021 ◽  
Vol 12 ◽  
Author(s):  
Aida Sarmiento-Vizcaíno ◽  
Jesús Martín ◽  
Fernando Reyes ◽  
Luis A. García ◽  
Gloria Blanco

Actinobacteria are the main producers of bioactive natural products essential for human health. Although their diversity in the atmosphere remains largely unexplored, using a multidisciplinary approach, we studied here 27 antibiotic producing Actinobacteria strains, isolated from 13 different precipitation events at three locations in Northern and Southern Spain. Rain samples were collected throughout 2013–2016, from events with prevailing Western winds. NOAA HYSPLIT meteorological analyses were used to estimate the sources and trajectories of the air-mass that caused the rainfall events. Five-day backward air masses trajectories of the diverse events reveals a main oceanic source from the North Atlantic Ocean, and in some events long range transport from the Pacific and the Arctic Oceans; terrestrial sources from continental North America and Western Europe were also estimated. Different strains were isolated depending on the precipitation event and the latitude of the sampling site. Taxonomic identification by 16S rRNA sequencing and phylogenetic analysis revealed these strains to belong to two Actinobacteria genera. Most of the isolates belong to the genus Streptomyces, thus increasing the number of species of this genus isolated from the atmosphere. Furthermore, five strains belonging to the rare Actinobacterial genus Nocardiopsis were isolated in some events. These results reinforce our previous Streptomyces atmospheric dispersion model, which we extend herein to the genus Nocardiopsis. Production of bioactive secondary metabolites was analyzed by LC-UV-MS. Comparative analyses of Streptomyces and Nocardiopsis metabolites with natural product databases led to the identification of multiple, chemically diverse, compounds. Among bioactive natural products identified 55% are antibiotics, both antibacterial and antifungal, and 23% have antitumor or cytotoxic properties; also compounds with antiparasitic, anti-inflammatory, immunosuppressive, antiviral, insecticidal, neuroprotective, anti-arthritic activities were found. Our findings suggest that over time, through samples collected from different precipitation events, and space, in different sampling places, we can have access to a great diversity of Actinobacteria producing an extraordinary reservoir of bioactive natural products, from remote and very distant origins, thus highlighting the atmosphere as a contrasted source for the discovery of novel compounds of relevance in medicine and biotechnology.


Sign in / Sign up

Export Citation Format

Share Document