marine natural products
Recently Published Documents


TOTAL DOCUMENTS

947
(FIVE YEARS 139)

H-INDEX

76
(FIVE YEARS 9)

2022 ◽  
pp. 1-6
Author(s):  
Yun-Fei Cheng ◽  
Hui-Jing Li ◽  
Xiao-Bo Wang ◽  
Yan-Chao Wu

Marine Drugs ◽  
2021 ◽  
Vol 20 (1) ◽  
pp. 29
Author(s):  
Lianxiang Luo ◽  
Ai Zhong ◽  
Qu Wang ◽  
Tongyu Zheng

Background: In the past decade, several antibodies directed against the PD-1/PD-L1 interaction have been approved. However, therapeutic antibodies also exhibit some shortcomings. Using small molecules to regulate the PD-1/PD-L1 pathway may be another way to mobilize the immune system to fight cancer. Method: 52,765 marine natural products were screened against PD-L1(PDBID: 6R3K). To identify natural compounds, a structure-based pharmacophore model was generated, following by virtual screening and molecular docking. Then, the absorption, distribution, metabolism, and excretion (ADME) test was carried out to select the most suitable compounds. Finally, molecular dynamics simulation was also performed to validate the binding property of the top compound. Results: Initially, 13 small marine molecules were screened based on the pharmacophore model. Then, two compounds were selected for further evaluation based on the molecular docking scores. After ADME and toxicity studies, molecule 51320 was selected for further verification. By molecular dynamics analysis, molecule 51320 maintains a stable conformation with the target protein, so it has the chance to become an inhibitor of PD-L1. Conclusions: Through structure-based pharmacophore modeling, virtual screening, molecular docking, ADMET approaches, and molecular dynamics (MD) simulation, the marine natural compound 51320 can be used as a small molecule inhibitor of PD-L1.


2021 ◽  
Vol 9 (12) ◽  
pp. 2551
Author(s):  
Quan Zhou ◽  
Kinya Hotta ◽  
Yaming Deng ◽  
Rui Yuan ◽  
Shu Quan ◽  
...  

Natural products play an important role in drug development, among which marine natural products are an underexplored resource. This review summarizes recent developments in marine natural product research, with an emphasis on compound discovery and production methods. Traditionally, novel compounds with useful biological activities have been identified through the chromatographic separation of crude extracts. New genome sequencing and bioinformatics technologies have enabled the identification of natural product biosynthetic gene clusters in marine microbes that are difficult to culture. Subsequently, heterologous expression and combinatorial biosynthesis have been used to produce natural products and their analogs. This review examines recent examples of such new strategies and technologies for the development of marine natural products.


2021 ◽  
Vol 944 (1) ◽  
pp. 012029
Author(s):  
N P Zamani ◽  
L Rahman ◽  
R L Rosada ◽  
W Tirtama

Abstract Marine natural products are sourced from marine biodiversity as natural raw materials for various commercial products. This study aims to review natural products of marine organisms and gap analysis for future research or challenges. A total of 109 references from 24 countries were collected. The analysis was carried out quantitatively and qualitatively. The bioactive compounds produced wereantioxidants, antibacterial, anticancer, antimicrobial, anti-fouling, antifungal, and anti-tumoral substances. Some marine organisms that can store chemical compounds through secondary metabolite processes are mangroves, seagrasses, macroalgae, microalgae, soft corals, molluscs, echinoderms, gastropods, cnidarians, sponges, fungi, and bacteria. Most of the papers only discuss the identification stage of the active compound, and some focus on product development. There are very few studies on prospects of commercialization and mass production. The problem to achieve mass production is due to the lack of interdisciplinary research collaboration. Future research challenges need to develop a transdisciplinary approach to study bioprospection research from upstream to downstream, starting from the potential identification of bioactive ingredients, product development, the availability of raw materials for mass production as well as commercialization and marketing.


Marine Drugs ◽  
2021 ◽  
Vol 19 (12) ◽  
pp. 667
Author(s):  
Alessia Caso ◽  
Fernanda Barbosa da Silva ◽  
Germana Esposito ◽  
Roberta Teta ◽  
Gerardo Della Sala ◽  
...  

Porifera, commonly referred to as marine sponges, are acknowledged as major producers of marine natural products (MNPs). Sponges of the genus Phorbas have attracted much attention over the years. They are widespread in all continents, and several structurally unique compounds have been identified from this species. Terpenes, mainly sesterterpenoids, are the major secondary metabolites isolated from Phorbas species, even though several alkaloids and steroids have also been reported. Many of these compounds have presented interesting biological activities. Particularly, Phorbas sponges have been demonstrated to be a source of cytotoxic metabolites. In addition, MNPs exhibiting cytostatic, antimicrobial, and anti-inflammatory activities have been isolated and structurally characterized. This review provides an overview of almost 130 secondary metabolites from Phorbas sponges and their biological activities, and it covers the literature since the first study published in 1993 until November 2021, including approximately 60 records. The synthetic routes to the most interesting compounds are briefly outlined.


Author(s):  
Alessia Caso ◽  
Fernanda Barbosa da Silva ◽  
Germana Esposito ◽  
Roberta Teta ◽  
Gerardo Della Sala ◽  
...  

Porifera, commonly referred to as marine sponges, have stood out as major producers of marine natural products (MNPs). Sponges of the genus Phorbas have attracted much attention along years. They are widespread in all continents, and several structurally unique compounds have been identified from species of this genus. Terpenes, mainly sesterterpenoids, represent the great majority of secondary metabolites isolated from Phorbas species, even though several alkaloids and steroids have also been reported. Many of these compounds have shown a variety of biological activities. Particularly, Phorbas sponges have been demonstrated to be a source of cytotoxic metabolites. In addition, MNPs exhibiting cytostatic, antimicrobial and anti-inflammatory activities, have been isolated and structurally characterized. This work brings an overview of Phorbas secondary metabolites reported since the first study published in 1993 until 2020, and their biological activities.


Sign in / Sign up

Export Citation Format

Share Document