methyl lactate
Recently Published Documents


TOTAL DOCUMENTS

159
(FIVE YEARS 47)

H-INDEX

27
(FIVE YEARS 6)

Author(s):  
Manuel Lange ◽  
Elisabeth Sennert ◽  
Martin A. Suhm

Prereactive complexes in noncovalent organocatalysis are sensitive to the relative chirality of the binding partners and to hydrogen bond isomerism. Both effects are present when a transiently chiral alcohol docks on a chiral α-hydroxy ester, turning such 1:1 complexes into elementary, non-reactive model systems for chirality induction in the gas phase. With the help of linear infrared and Raman spectroscopy in supersonic jet expansions, conformational preferences are investigated for benzyl alcohol in combination with methyl lactate, also exploring p-chlorination of the alcohol and the achiral homolog methyl glycolate to identify potential London dispersion and chirality effects on the energy sequence. Three of the four combinations prefer barrierless complexation via the hydroxy group of the ester (association). In contrast, the lightest complex shows predominantly insertion into the intramolecular hydrogen bond, like the analogous lactate and glycolate complexes of methanol. The experimental findings are rationalized with computations and a uniform helicality induction in the alcohol by the lactate is predicted, independent on insertion into or association with the internal lactate hydrogen bond. p-Chlorination of benzyl alcohol has a stabilizing effect on association, because the insertion motif prevents a close contact between the chlorine and the hydroxy ester. After simple anharmonicity and substitution corrections, the B3LYP-D3 approach offers a fairly systematic description of the known spectroscopic data on alcohol complexes with α-hydroxy esters.


Catalysts ◽  
2021 ◽  
Vol 11 (11) ◽  
pp. 1346
Author(s):  
Zahra Asgar Pour ◽  
Dina G. Boer ◽  
Shun Fang ◽  
Zhenchen Tang ◽  
Paolo P. Pescarmona

Bimetallic zeolite Beta in bead format and containing Al sites with Brønsted acid behavior and Sn, Zr or Hf sites with Lewis acid character, were prepared using a two-step synthetic route. First, zeolite Beta in the format of macroscopic beads (400 to 840 μm) with hierarchical porosity (micropores accessed through meso- and macropores in the range of 30 to 150 nm) were synthesized by hydrothermal crystallization in the presence of anion-exchange resin beads as hard template and further converted into their H-form. Next, the zeolite beads were partially dealuminated using different concentrations of HNO3 (i.e., 1.8 or 7.2 M), followed by grafting with one of the above-mentioned metals (Sn, Zr or Hf) to introduce Lewis acid sites. These bimetallic zeolites were tested as heterogeneous catalysts in the conversion of dihydroxyacetone (DHA) to methyl lactate (ML). The Sn-containing zeolite Beta beads treated by 1.8 M HNO3 and grafted with 27 mmol of SnCl4 (Sn-deAl-1.8-Beta-B) demonstrated the best catalytic activity among the prepared bimetallic zeolite beads, with 99% selectivity and 90% yield of ML after 6 h at 90 °C. This catalyst was also tested in combination with Au-Pd nanoparticles supported on functionalized carbon nanotubes (CNTs) as multifunctional catalytic system for the conversion of glycerol to ML, achieving 29% conversion of glycerol and 67% selectivity towards ML after 4.5 h at 140 °C under 30 bar air. The catalytic results were rationalized by means of a thorough characterization of the zeolitic beads with a combination of techniques (XRD, N2-physisorption, SEM, XRF, TEM, UV-vis spectroscopy and pyridine-FT-IR).


2021 ◽  
Vol 6 (39) ◽  
pp. 10674-10681
Author(s):  
Hao Ma ◽  
Yi Wen ◽  
Chenghua Yu ◽  
Yanhui Qiao ◽  
Junjiang Teng ◽  
...  
Keyword(s):  

2021 ◽  
Vol 155 (2) ◽  
pp. 024507
Author(s):  
Sergey A. Katsyuba ◽  
Sebastian Spicher ◽  
Tatiana P. Gerasimova ◽  
Stefan Grimme
Keyword(s):  

Author(s):  
Xiangcheng Li ◽  
Xiaohong Yuan ◽  
Guopeng Xia ◽  
Jun Liang ◽  
Chuang Liu ◽  
...  

Processes ◽  
2021 ◽  
Vol 9 (6) ◽  
pp. 921
Author(s):  
Fabio M. Lamberti ◽  
Andy Ingram ◽  
Joseph Wood

Plastic pollution is a global issue that is approaching crisis levels as plastic production is projected to reach 1.1 GT annually by 2050. The bioplastic industry along with a circular production economy are solutions to this problem. One promising bioplastic polylactic acid (PLA) has mechanical properties comparable to polystyrene (PS), so it could replace PS in its applications as a more environmentally sustainable material. However, since the bioplastic PLA also suffers from long biodegradation times in the environment, to ensure that it does not add to the current pollution problem, it should instead be chemically recycled. In this work, PLA was chemically recycled via alcoholysis, using either methanol or ethanol to generate the value-added products methyl lactate and ethyl lactate respectively. Two catalysts, zinc acetate dihydrate (ZnAc) and 4-(dimethylamino)pyridine (DMAP), were tested both individually and in mixtures. A synergistic effect was exhibited on the reaction rate when both catalysts were used in an equal ratio. The methanolysis reaction was determined to be two-step, with the activation energy estimated to be 73 kJ mol−1 for the first step and 40.16 kJ mol−1 for the second step. Both catalysts are cheap and commercially available, their synergistic effect could be exploited for large-scale PLA recycling.


Sign in / Sign up

Export Citation Format

Share Document