Investigation of the pollution risk of residues from a laboratory-scale underground coal gasification of Malkara (Turkey) lignite

2018 ◽  
Vol 16 (2) ◽  
pp. 1093-1102 ◽  
Author(s):  
Y. Fallahi ◽  
A. A. Aydın ◽  
M. Gür ◽  
H. Okutan
Energies ◽  
2017 ◽  
Vol 10 (2) ◽  
pp. 238 ◽  
Author(s):  
Akihiro Hamanaka ◽  
Fa-qiang Su ◽  
Ken-ichi Itakura ◽  
Kazuhiro Takahashi ◽  
Jun-ichi Kodama ◽  
...  

Fuel ◽  
2013 ◽  
Vol 113 ◽  
pp. 837-843 ◽  
Author(s):  
Sminu Bhaskaran ◽  
Anuradda Ganesh ◽  
Sanjay Mahajani ◽  
Preeti Aghalayam ◽  
R.K. Sapru ◽  
...  

Author(s):  
Joniken Lesmana ◽  
Abu Hasan ◽  
Aida Syarief

Underground Coal Gasification is a method used to convert underground coal seams into a gaseous product commonly called synthetic gas through a flammable chemical process without going through a conventional mining process. The UCG concept was first developed in England which was then continued by the Soviet Union in field trials of UCG which was used as a power plant. In Indonesia, Tekmira has begun to research UCG, but there are very few publications on UCG. Therefore, it is necessary to conduct research on laboratory scale UCG for analysis of gas products to support the study of renewable energy. UCG testing begins with sample preparation followed by laboratory-scale coal gasification testing. There is a sample of coal used in the test, namely Subbituminous Coal from Tanjung Enim, South Sumatra. Initial combustion is carried out by flowing propane gas into the reactor tube using a burner. Furthermore, a mixture of oxygen gas and compressed air is used to keep the coals burning. After obtaining the gas from the combustion, then gas sampling is carried out using a suction pump which will be stored in a tedlar gas bag. Combustion gas products will be checked for syngas concentration using a Gas Chromatography tool to determine the concentration of CH4, CO2 and O2 gases. From the tests that have been carried out, the gas concentrations of O2 are 3.67%, CO2 41.51%, and CH4 6.93%. Coal in the confined test conditions has good conditions with indications of seeing the concentration of CH4, O2, and CO2 gas.


2014 ◽  
Vol 1 (1) ◽  
pp. 15-24 ◽  
Author(s):  
Dipankar Chatterjee ◽  
◽  
Satish Gupta ◽  
Chebolu Aravind ◽  
Rakesh Roshan

Author(s):  
Marian Wiatowski ◽  
Roksana Muzyka ◽  
Krzysztof Kapusta ◽  
Maciej Chrubasik

AbstractIn this study, the composition of tars collected during a six-day underground coal gasification (UCG) test at the experimental mine ‘Barbara’ in Poland in 2013 was examined. During the test, tar samples were taken every day from the liquid product separator and analysed by the methods used for testing properties of typical coke oven (coal) tar. The obtained results were compared with each other and with the data for coal tar. As gasification progressed, a decreasing trend in the water content and an increasing trend in the ash content were observed. The tars tested were characterized by large changes in the residue after coking and content of parts insoluble in toluene and by smaller fluctuations in the content of parts insoluble in quinoline. All tested samples were characterized by very high distillation losses, while for samples starting from the third day of gasification, a clear decrease in losses was visible. A chromatographic analysis showed that there were no major differences in composition between the tested tars and that none of the tar had a dominant component such as naphthalene in coal tar. The content of polycyclic aromatic hydrocarbons (PAHs) in UCG tars is several times lower than that in coal tar. No light monoaromatic hydrocarbons (benzene, toluene, ethylbenzene and xylenes—BTEX) were found in the analysed tars, which results from the fact that these compounds, due to their high volatility, did not separate from the process gas in the liquid product separator.


Sign in / Sign up

Export Citation Format

Share Document