process gas
Recently Published Documents


TOTAL DOCUMENTS

448
(FIVE YEARS 105)

H-INDEX

20
(FIVE YEARS 4)

Author(s):  
Martin R. Machat ◽  
Jakob Marbach ◽  
Hannah Schumacher ◽  
Suresh Raju ◽  
Markus Lansing ◽  
...  

Provided is a concept of how the carbon content of CO/CO2-containing blast furnace gas (BFG) from steel production could be utilized in a sequence of selective chemical conversion steps to produce high value intermediates for the polymer industry.


Processes ◽  
2021 ◽  
Vol 10 (1) ◽  
pp. 27
Author(s):  
Jafar Safarian

Hydrogen and aluminum were used to produce manganese, aluminum–manganese (AlMn) and ferromanganese (FeMn) alloys through experimental work, and mass and energy balances. Oxide pellets were made from Mn oxide and CaO powder, followed by pre-reduction by hydrogen. The reduced MnO pellets were then smelted and reduced at elevated temperatures through CaO flux and Al reductant addition, yielding metallic Mn. Changing the amount of the added Al for the aluminothermic reduction, with or without iron addition led to the production of Mn metal, AlMn alloy and FeMn alloy. Mass and energy balances were carried out for three scenarios to produce these metal products with feasible material flows. An integrated process with three main steps is introduced; a pre-reduction unit to pre-reduce Mn ore, a smelting-aluminothermic reduction unit to produce metals from the pre-reduced ore, and a gas treatment unit to do heat recovery and hydrogen looping from the pre-reduction process gas. It is shown that the process is sustainable regarding the valorization of industrial waste and the energy consumptions for Mn and its alloys production via this process are lower than current commercial processes. Ferromanganese production by this process will prevent the emission of about 1.5 t CO2/t metal.


10.30544/757 ◽  
2021 ◽  
Vol 27 (4) ◽  
pp. 411-423
Author(s):  
Tatjana Mirkovic ◽  
Hauke Bartusch ◽  
Pavel Ivashechkin ◽  
Thorsten Hauck

At blast furnace B at Salzgitter Flachstahl a series of innovative measuring techniques are installed to monitor the processes at the blast furnace top, making this furnace one of the best equipped furnaces in Europe. These techniques comprise full 2D measurement of the temperature profile of the top gas shortly above the burden surface, 3D radar scan of the whole burden surface and online measurement of the dust concentration in the top gas. After more than 5 years’ experience with most of these techniques, they enable to better understand the complex chemical and physical interrelations occurring in the BF stack between the ascending process gas and the descending solid burden. A couple of examples of incidents that were monitored are presented in this article, including influences of charging programmes on top gas temperature profiles and influences of disturbed gas solids interaction on the BF working state. The new measuring techniques with tailor-made data processing enable the operators to gain a better picture of the processes currently occurring in the blast furnace, consequently supporting them in keeping the blast furnace operation as stable and efficient as possible.


Author(s):  
Takuma Itoh ◽  
Asuka Miura ◽  
Ken-ichi Uchida ◽  
Hideto YANAGIHARA

Abstract The spin Peltier effect (SPE) in Pt/Fe3O4 hybrid structures with epitaxial Fe3O4 layers synthesized by reactive sputtering using two different process gases, Ar/O2 and Kr/O2, was investigated. The magnitude of the SPE-induced temperature modulation for the Fe3O4 film grown using Kr/O2 was approximately 40% larger than that grown using Ar/O2 despite almost the same crystalline structures and magnetic and electric properties of the films. The enhancement of the SPE signal for the film grown with Kr/O2 can be attributed to an increase in the spin current injected into the Fe3O4 film owing to its large roughness.


Metals ◽  
2021 ◽  
Vol 11 (12) ◽  
pp. 2016
Author(s):  
Surinder Singh ◽  
R. K. Singh Raman ◽  
Christopher C. Berndt ◽  
Harpreet Singh

The cold spray process is governed by the impact of high velocity feedstock particles onto a substrate without melting. Hence, the bulk material properties are retained. However, it is challenging to achieve good adhesion strength. The adhesion strength depends on factors such as the cold spray process parameters, substrate conditions, coating/substrate interactions at the interface and feedstock material properties. This review examines fundamental studies concerning the adhesion mechanisms of cold spray technology and considers the effect of cold spray input parameters such as temperature, stand-off-distance, pressure, process gas, spray angle, and traverse speed of the cold spray torch on the bonding mechanism and adhesion strength. Furthermore, the effects of substrate conditions such as temperature, hardness, roughness and material on the adhesion mechanism are highlighted. The effect of feedstock properties, such as feed rate, shape and size are summarized. Understanding the effect of these parameters is necessary to obtain the optimal input parameters that enable the best interfacial properties for a range of coating/substrate material combinations. It is expected that feedstock of spherical morphology and small particle size (<15 μm) provides optimal interfacial properties when deposited onto a mirror-finished substrate surface using high pressure cold spray. Deep insights into each parameter exposes the uncovered potential of cold spray as an additive manufacturing method.


2021 ◽  
Author(s):  
Clément Salais ◽  
Laurent Normand ◽  
Christian Streicher

Abstract CO2 capture & storage is foreseen as a necessity to limit global warming, as indicated by the recent reports from International Energy Agency. Major initiatives have to be initiated in a near future with concrete actions to get efficient results in limiting global warming. Based on its decades of experience in gas sweetening AXENS has developed an expertise in CO2 removal technologies. While conventional amine based processes can be used for some CO2 capture applications like for instance the treatment of process gas streams under pressure, other applications for low pressure gas streams like flue gases will require innovative advanced solutions. AXENS has studied various options for the removal of CO2 in SMR based hydrogen schemes, including the treatment of the process gas or the treatment of the flue gases from the SMR furnace, evaluating the respective merits of those options. For the treatment of the flue gases a new technology developed by IFPEN and AXENS based on a second generation amine solvent is considered : DMX™ DMX™ process, is foreseen as a key contributor for the removal of CO2 from all kind of low pressure gas streams. This process allows drastic reduction of CO2 capture cost in comparison to more conventional solvent such as MEA and others available solvents. The specific features of this solvent allows significant reduction of the heat requirements for the regeneration of the solvent. It also allows regenerating the solvent directly under pressure up to 6 bara, reducing the costs for downstream CO2 compression Preliminary techno-economic studies show significant advantage of DMX™ technology relatively to MEA : up to 30 % reduction in OPEX can be obtained for lower or similar CAPEX, depending on the condition. This process has been developed at the lab scale and is now going to be demonstrated in an industrial pilot unit installed in ArcelorMittal's steel mill plant in Dunkirk (France). This demonstration benefits from the support of EU's H2020 programme, under 3D project.


Author(s):  
Michael N Ashfold ◽  
Yu A Mankelevich

Abstract The growth rate of diamond by chemical vapour deposition (CVD) from microwave (MW) plasma activated CH4/H2 gas mixtures can be significantly enhanced by adding trace quantities of N2 to the process gas mixture. Reasons for this increase remain unclear. The present article reports new, self-consistent two-dimensional modelling of MW activated N2/H2 and N2/CH4/H2 plasmas operating at pressures and powers relevant to contemporary diamond CVD, the results of which are compared and tensioned against available experimental data. The enhanced N/C/H plasma chemical modelling reveals the very limited reactivity of N2 under typical processing conditions and the dominance of N atoms amongst the dilute ‘soup’ of potentially reactive N-containing species incident on the growing diamond surface. Ways in which these various N-containing species may enhance growth rates are also discussed.


Author(s):  
Tatyana A. Brusentseva ◽  
◽  
Vladislav S. Shikalov ◽  
Sergei M. Lavruk ◽  
Vasily M. Fomin

The work is devoted to the deposition of composite powder materials by cold spray method. As a spraying material, a thermoplastic compound «WAY» for marking the roadway was used. An asphalt concrete was used as a substrate. As a result of experimental studies, the dependence of the deposition efficiency on the stagnation temperature of the working air in the ejector nozzle was obtained. The ANSYS Fluent package was used for evaluative modeling of the cold spraying process. Gas flow patterns were obtained in the computational domain without particles and taking into account the interaction of the flow with particles. The trajectory of the particles was calculated for various spraying parameters


Sign in / Sign up

Export Citation Format

Share Document