Necessary and Sufficient Conditions for the Riemannian Map to be a Harmonic Map on Cosymplectic Manifolds

Author(s):  
Bhavna Panday ◽  
J. P. Jaiswal ◽  
R. H. Ojha
2011 ◽  
Vol 08 (07) ◽  
pp. 1439-1454 ◽  
Author(s):  
BAYRAM ṢAHIN

This paper has two aims. First, we show that the usual notion of umbilical maps between Riemannian manifolds does not work for Riemannian maps. Then we introduce a new notion of umbilical Riemannian maps between Riemannian manifolds and give a method on how to construct examples of umbilical Riemannian maps. In the second part, as a generalization of CR-submanifolds, holomorphic submersions, anti-invariant submersions, invariant Riemannian maps and anti-invariant Riemannian maps, we introduce semi-invariant Riemannian maps from Riemannian manifolds to almost Hermitian manifolds, give examples and investigate the geometry of distributions which are arisen from definition. We also obtain a decomposition theorem and give necessary and sufficient conditions for a semi-invariant Riemannian map to be totally geodesic. Then we study the geometry of umbilical semi-invariant Riemannian maps and obtain a classification theorem for such Riemannian maps.


2014 ◽  
Vol 20 (2) ◽  
Author(s):  
Joanna Wełyczko

AbstractAlmost paracontact metric manifolds are the famous examples of almost para-CR manifolds. We find necessary and sufficient conditions for such manifolds to be para-CR. Next we examine these conditions in certain subclasses of almost paracontact metric manifolds. Especially, it is shown that normal almost paracontact metric manifolds are para-CR. We establish necessary and sufficient conditions for paracontact metric manifolds as well as for almost para-cosymplectic manifolds to be para-CR. We find also basic curvature identities for para-CR paracontact metric manifolds and study their consequences. Among others, we prove that any para-CR paracontact metric manifold of constant sectional curvature and of dimension greater than 3 must be para-Sasakian and its curvature equal to -1. The last assertion does not hold in dimension 3. We show that a conformally flat para-Sasakian manifold is of constant sectional curvature equal to -1. New classes of examples of para-CR manifolds are established.


Filomat ◽  
2018 ◽  
Vol 32 (13) ◽  
pp. 4787-4801 ◽  
Author(s):  
Süleyman Dirik

In this paper, we study the differential geometry of contact CR-submanifolds of a cosymplectic manifold. Necessary and sufficient conditions are given for a submanifold to be a contact CR-submanifold in cosymplectic manifolds and cosymplectic space forms. Finally, the induced structures on submanifolds are investigated, these structures are categorized and we discuss these results.


1986 ◽  
Vol 23 (04) ◽  
pp. 851-858 ◽  
Author(s):  
P. J. Brockwell

The Laplace transform of the extinction time is determined for a general birth and death process with arbitrary catastrophe rate and catastrophe size distribution. It is assumed only that the birth rates satisfyλ0= 0,λj> 0 for eachj> 0, and. Necessary and sufficient conditions for certain extinction of the population are derived. The results are applied to the linear birth and death process (λj=jλ, µj=jμ) with catastrophes of several different types.


2020 ◽  
Vol 17 (3) ◽  
pp. 313-324
Author(s):  
Sergii Chuiko ◽  
Ol'ga Nesmelova

The study of the differential-algebraic boundary value problems, traditional for the Kiev school of nonlinear oscillations, founded by academicians M.M. Krylov, M.M. Bogolyubov, Yu.A. Mitropolsky and A.M. Samoilenko. It was founded in the 19th century in the works of G. Kirchhoff and K. Weierstrass and developed in the 20th century by M.M. Luzin, F.R. Gantmacher, A.M. Tikhonov, A. Rutkas, Yu.D. Shlapac, S.L. Campbell, L.R. Petzold, Yu.E. Boyarintsev, V.F. Chistyakov, A.M. Samoilenko, O.A. Boichuk, V.P. Yacovets, C.W. Gear and others. In the works of S.L. Campbell, L.R. Petzold, Yu.E. Boyarintsev, V.F. Chistyakov, A.M. Samoilenko and V.P. Yakovets were obtained sufficient conditions for the reducibility of the linear differential-algebraic system to the central canonical form and the structure of the general solution of the degenerate linear system was obtained. Assuming that the conditions for the reducibility of the linear differential-algebraic system to the central canonical form were satisfied, O.A.~Boichuk obtained the necessary and sufficient conditions for the solvability of the linear Noetherian differential-algebraic boundary value problem and constructed a generalized Green operator of this problem. Based on this, later O.A. Boichuk and O.O. Pokutnyi obtained the necessary and sufficient conditions for the solvability of the weakly nonlinear differential algebraic boundary value problem, the linear part of which is a Noetherian differential algebraic boundary value problem. Thus, out of the scope of the research, the cases of dependence of the desired solution on an arbitrary continuous function were left, which are typical for the linear differential-algebraic system. Our article is devoted to the study of just such a case. The article uses the original necessary and sufficient conditions for the solvability of the linear Noetherian differential-algebraic boundary value problem and the construction of the generalized Green operator of this problem, constructed by S.M. Chuiko. Based on this, necessary and sufficient conditions for the solvability of the weakly nonlinear differential-algebraic boundary value problem were obtained. A typical feature of the obtained necessary and sufficient conditions for the solvability of the linear and weakly nonlinear differential-algebraic boundary-value problem is its dependence on the means of fixing of the arbitrary continuous function. An improved classification and a convergent iterative scheme for finding approximations to the solutions of weakly nonlinear differential algebraic boundary value problems was constructed in the article.


Filomat ◽  
2017 ◽  
Vol 31 (4) ◽  
pp. 925-940 ◽  
Author(s):  
Medine Yeşilkayagil ◽  
Feyzi Başar

Let 0 < s < ?. In this study, we introduce the double sequence space Rqt(Ls) as the domain of four dimensional Riesz mean Rqt in the space Ls of absolutely s-summable double sequences. Furthermore, we show that Rqt(Ls) is a Banach space and a barrelled space for 1 ? s < 1 and is not a barrelled space for 0 < s < 1. We determine the ?- and ?(?)-duals of the space Ls for 0 < s ? 1 and ?(bp)-dual of the space Rqt(Ls) for 1 < s < 1, where ? ? {p, bp, r}. Finally, we characterize the classes (Ls:Mu), (Ls:Cbp), (Rqt(Ls) : Mu) and (Rqt(Ls):Cbp) of four dimensional matrices in the cases both 0 < s < 1 and 1 ? s < 1 together with corollaries some of them give the necessary and sufficient conditions on a four dimensional matrix in order to transform a Riesz double sequence space into another Riesz double sequence space.


Sign in / Sign up

Export Citation Format

Share Document