scholarly journals On the solutions of three-point boundary value problems using variational-fixed point iteration method

2016 ◽  
Vol 10 (1-2) ◽  
pp. 33-40 ◽  
Author(s):  
A. Kilicman ◽  
M. Wadai
2021 ◽  
Vol 14 (3) ◽  
pp. 969-979
Author(s):  
Fatma Aydın Akgün ◽  
Zaur Rasulov

The aim of this paper is to extend and generalize Picard-Green’s fixed point iteration method for the solution of fourth-order Boundary Value Problems. Several numerical applications to linear and nonlinear fourth-order Boundary Value Problems are discussed to illustrate the main results.


2007 ◽  
Vol 14 (4) ◽  
pp. 775-792
Author(s):  
Youyu Wang ◽  
Weigao Ge

Abstract In this paper, we consider the existence of multiple positive solutions for the 2𝑛th order 𝑚-point boundary value problem: where (0,1), 0 < ξ 1 < ξ 2 < ⋯ < ξ 𝑚–2 < 1. Using the Leggett–Williams fixed point theorem, we provide sufficient conditions for the existence of at least three positive solutions to the above boundary value problem. The associated Green's function for the above problem is also given.


2019 ◽  
Vol 2019 ◽  
pp. 1-10 ◽  
Author(s):  
Yunhong Li ◽  
Weihua Jiang

In this work, we investigate the existence and nonexistence of positive solutions for p-Laplacian fractional differential equation with a parameter. On the basis of the properties of Green’s function and Guo-Krasnosel’skii fixed point theorem on cones, the existence and nonexistence of positive solutions are obtained for the boundary value problems. We also give some examples to illustrate the effectiveness of our main results.


2003 ◽  
Vol 46 (2) ◽  
pp. 279-292 ◽  
Author(s):  
Ruyun Ma

AbstractIn this paper we consider the existence of positive solutions to the boundary-value problems\begin{align*} (p(t)u')'-q(t)u+\lambda f(t,u)\amp=0,\quad r\ltt\ltR, \\[2pt] au(r)-bp(r)u'(r)\amp=\sum^{m-2}_{i=1}\alpha_iu(\xi_i), \\ cu(R)+dp(R)u'(R)\amp=\sum^{m-2}_{i=1}\beta_iu(\xi_i), \end{align*}where $\lambda$ is a positive parameter, $a,b,c,d\in[0,\infty)$, $\xi_i\in(r,R)$, $\alpha_i,\beta_i\in[0,\infty)$ (for $i\in\{1,\dots m-2\}$) are given constants satisfying some suitable conditions. Our results extend some of the existing literature on superlinear semipositone problems. The proofs are based on the fixed-point theorem in cones.AMS 2000 Mathematics subject classification: Primary 34B10, 34B18, 34B15


2009 ◽  
Vol 2009 ◽  
pp. 1-15
Author(s):  
Jian Liu ◽  
Fuyi Xu

We study the following third-orderm-point boundary value problems on time scales(φ(uΔ∇))∇+a(t)f(u(t))=0,t∈[0,T]T,u(0)=∑i=1m−2biu(ξi),uΔ(T)=0,φ(uΔ∇(0))=∑i=1m−2ciφ(uΔ∇(ξi)), whereφ:R→Ris an increasing homeomorphism and homomorphism andφ(0)=0,0<ξ1<⋯<ξm−2<ρ(T). We obtain the existence of three positive solutions by using fixed-point theorem in cones. The conclusions in this paper essentially extend and improve the known results.


Sign in / Sign up

Export Citation Format

Share Document