Effect of activated flux tungsten inert gas (A-TIG) welding on the mechanical properties and the metallurgical and corrosion assessment of Inconel 625

Author(s):  
J. Sivakumar ◽  
M. Vasudevan ◽  
Nanda Naik Korra
2020 ◽  
Vol 36 (01) ◽  
pp. 78-86
Author(s):  
Shaji Krishna Prasad ◽  
Andy Mathiazhagan ◽  
Pallichakkalayil Sasidharan Krishnadas

The study compared the effects of manual activated tungsten inert gas (A-TIG) welding and automated A-TIG welding on AISI (American Iron and Steel Institute)- 304 at three different values of current using commercially available powders of Al2O3, SiO2, Fe2O3, MgCl2, and TiO2 separately as activated flux and distilled water as carrier solvent. The effect of fluxes on the depth of penetration of the weldments, width of weldment, microstructure of the weldment, and microhardness of the weldment was investigated. Reverse Marangoni convection and arc constriction are found to be more effective in A-TIG manual welding, as aspect ratio obtained by A-TIG manual welding is greater as than that of automatic A-TIG welding. Microstructure of both the manual and automatic A-TIG-welded specimen is similar with no noticeable differences and almost same amount of intermetallic phases and carbon precipitates. Microhardness tests revealed that for Al2O3 and TiO2 fluxes, manual A-TIG-welded specimen have lower values of microhardness at weldment, heat-affected zone, and base metal than automated A-TIG-welded specimen. The aim of the study is to implement the manual A-TIG process in shipbuilding industry to improve the productivity of welding as automated A-TIG welding in the industry has limitations.


Author(s):  
S A Afolalu ◽  
S B Soetan ◽  
S O Ongbali ◽  
A A Abioye ◽  
A S Oni

2009 ◽  
pp. 185-200
Author(s):  
J. P. Ganjigatti ◽  
Dilip Kumar Pratihar

In this chapter, an attempt has been made to design suitable knowledge bases (KBs) for carrying out forward and reverse mappings of a Tungsten inert gas (TIG) welding process. In forward mapping, the outputs (also known as the responses) are expressed as the functions of the input variables (also called the factors), whereas in reverse mapping, the factors are represented as the functions of the responses. Both the forward as well as reverse mappings are required to conduct, for an effective online control of a process. Conventional statistical regression analysis is able to carry out the forward mapping efficiently but it may not be always able to solve the problem of reverse mapping. It is a novel attempt to conduct the forward and reverse mappings of a TIG welding process using fuzzy logic (FL)-based approaches and these are found to solve the said problem efficiently.


Author(s):  
Akash Deep ◽  
Vivek Singh ◽  
Som Ashutosh ◽  
M. Chandrasekaran ◽  
Dixit Patel

Abstract Austenitic stainless steel (ASS) is widely fabricated by tungsten inert gas (TIG) welding for aesthetic look and superior mechanical properties while compared to other arc welding process. Hitherto, the limitation of this process is low depth of penetration and less productivity. To overcome this problem activated tungsten inert gas (A-TIG) welding process is employed as an alternative. In this investigation the welding performance of conventional TIG welding is compared with A-TIG process using TiO2 and SiO2 flux with respect to weld bead geometry. The experimental investigation on A-TIG welding of ASS-201 grade shows TiO2 flux helps in achieve higher penetration as compared to SiO2 flux. While welding with SiO2 the hardness in HAZ and weld region higher than that of TIG welding process.


Sign in / Sign up

Export Citation Format

Share Document