martensitic steel
Recently Published Documents


TOTAL DOCUMENTS

1462
(FIVE YEARS 371)

H-INDEX

53
(FIVE YEARS 8)

2022 ◽  
Vol 55 (1) ◽  
Author(s):  
Frank Niessen ◽  
Tuomo Nyyssönen ◽  
Azdiar A. Gazder ◽  
Ralf Hielscher

A versatile generic framework for parent grain reconstruction from fully or partially transformed child microstructures has been integrated into the open-source crystallographic toolbox MTEX. The framework extends traditional parent grain reconstruction, phase transformation and variant analysis to all parent–child crystal symmetry combinations. The inherent versatility of the universally applicable parent grain reconstruction methods and the ability to conduct in-depth variant analysis are showcased via example workflows that can be programmatically modified by users to suit their specific applications. This is highlighted by three applications, namely α′-to-γ reconstruction in a lath martensitic steel, α-to-β reconstruction in a Ti alloy, and a two-step reconstruction from α′ to ɛ to γ in a twinning and transformation-induced plasticity steel. Advanced orientation relationship discovery and analysis options, including variant analysis, are demonstrated via the add-on function library ORTools.


2022 ◽  
Vol 8 ◽  
Author(s):  
Aniruddh Das ◽  
Eberhard Altstadt ◽  
Cornelia Kaden ◽  
Garima Kapoor ◽  
Shavkat Akhmadaliev ◽  
...  

Nanoindentation of ion-irradiated nuclear structural materials and model alloys has received considerable interest in the published literature. In the reported studies, the materials were typically exposed to irradiations using a single ion energy varying from study to study from below 1 MeV to above 10 MeV. However, systematic investigations into the effect of self-ion energy are still insufficient, meaning that the possibilities to gain insight from systematic energy variations are not yet exhausted. We have exposed pure Fe, ferritic Fe-9Cr, martensitic Fe-9Cr and the ferritic-martensitic reduced-activation steel Eurofer 97 to ion irradiations at 300°C using 1, 2 and 5 MeV Fe2+ ions as well as 8 MeV Fe3+ ions and applied nanoindentation, using a Berkovich diamond indenter, to characterize as-irradiated samples and unirradiated references. The effect of the ion energy on the measured nanoindentation response is discussed for each material. Two versions of a primary-damage-informed model are applied to fit the measured irradiation-induced hardening. The models are critically compared with the experimental results also taking into account reported microstructural evidence. Related ion-neutron transferability issues are addressed.


Metals ◽  
2022 ◽  
Vol 12 (1) ◽  
pp. 79
Author(s):  
Igor Litovchenko ◽  
Kseniya Almaeva ◽  
Nadezhda Polekhina ◽  
Sergey Akkuzin ◽  
Valeria Linnik ◽  
...  

The effect of high-temperature thermomechanical treatment (HTMT) with plastic deformation by rolling in austenitic region on the microstructure and mechanical properties of 12% chromium ferritic-martensitic steel EP-823 is investigated. The features of the grain and defect microstructure of steel are studied by Scanning Electron Microscopy with Electron Back-Scatter Diffraction (SEM EBSD) and Transmission Electron Microscopy (TEM). It is shown that HTMT leads to the formation of pancake structure with grains extended in the rolling direction and flattened in the rolling plane. The average sizes of martensitic packets and ferrite grains are approximately 1.5–2 times smaller compared to the corresponding values after traditional heat treatment (THT, which consists of normalization and tempering). The maximum grain size in the section parallel to the rolling plane increases up to more than 80 µm. HTMT leads to the formation of new sub-boundaries and a higher dislocation density. The fraction of low-angle misorientation boundaries reaches up to ≈68%, which exceeds the corresponding value after HTMT (55%). HTMT does not practically affect the carbide subsystem of steel. The mechanical properties are investigated by tensile tests in the temperature range 20–700 °C. It is shown that the values of the yield strength in this temperature range after HTMT increase relative to the corresponding values after THT. As a result of HTMT, the elongation decreases. A significant decrease is observed in the area of dynamic strain aging (DSA). The mechanisms of plastic deformation and strengthening of ferritic-martensitic steel under the high-temperature thermomechanical treatments are also discussed.


2022 ◽  
pp. 153528
Author(s):  
C.J. Rietema ◽  
M.R. Chancey ◽  
S.K. Ullrich ◽  
C.B. Finfrock ◽  
D.V. Marshall ◽  
...  

2022 ◽  
Vol 207 ◽  
pp. 114306
Author(s):  
Shengli Li ◽  
Napat Vajragupta ◽  
Abhishek Biswas ◽  
Wenshen Tang ◽  
Hao Wang ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document