scholarly journals Influence of Zn Content on Microstructures, Mechanical Properties and Stress Corrosion Behavior of AA5083 Aluminum Alloy

2020 ◽  
Vol 33 (10) ◽  
pp. 1369-1378
Author(s):  
Zhixiong Zhu ◽  
Xingxu Jiang ◽  
Gang Wei ◽  
Xiaogang Fang ◽  
Zhihong Zhong ◽  
...  
2021 ◽  
Vol 15 ◽  
pp. 1130-1144
Author(s):  
Yuzhe Pan ◽  
Yu Wang ◽  
Fuqiang Guo ◽  
Tiehao Zhang ◽  
Kenji Matsuda ◽  
...  

Metals ◽  
2021 ◽  
Vol 11 (10) ◽  
pp. 1633
Author(s):  
Zhiyi Zhang ◽  
Xiaoguang Sun ◽  
Shiming Huang ◽  
Xiaohui Han ◽  
Ping Zhu ◽  
...  

Aluminum alloy components of high-speed trains have a great risk of being corroded by various corrosive medium due to extremely complex atmospheric environments. This will bring out huge losses and reduce the safety and stability of trains. In order to solve the problem, cold spray process was used for repairing the damage of the aluminum alloy components with Al-based powders. Microstructure, mechanical properties and corrosion behavior were studied. The results indicated that there were very few pores and cracks in the repaired areas after repairing. The average microhardness of the repaired areas was 54.5 HV ± 3.4 HV, and the tensile strength of the repaired samples was 160.4 MPa. After neutral salt spray tests for 1000 h, the rate of mass loss of the samples repaired by cold spray was lower than that of 6A01 aluminum alloy. The electrochemical test results showed that the repaired areas had a higher open circuit potential than 6A01 aluminum alloy. As a result, the repaired areas such as the anode protected its nearby substrate. The samples repaired by cold spray exhibited better corrosion than 6A01 aluminum alloy. Cold spray process and Al-based powders are applicable for repairing the aluminum alloy components of high-speed trains.


Sign in / Sign up

Export Citation Format

Share Document