aa5083 aluminum alloy
Recently Published Documents


TOTAL DOCUMENTS

36
(FIVE YEARS 23)

H-INDEX

6
(FIVE YEARS 3)

Molecules ◽  
2021 ◽  
Vol 26 (24) ◽  
pp. 7413
Author(s):  
Mohammad Reza Shishesaz ◽  
Moslem Ghobadi ◽  
Najmeh Asadi ◽  
Alireza Zarezadeh ◽  
Ehsan Saebnoori ◽  
...  

The effects of surface pretreatments on the cerium-based conversion coating applied on an AA5083 aluminum alloy were investigated using a combination of scanning electron microscopy (SEM), energy-dispersive X-ray spectroscopy (EDS), polarization testing, and electrochemical impedance spectroscopy. Two steps of pretreatments containing acidic or alkaline solutions were applied to the surface to study the effects of surface pretreatments. Among the pretreated samples, the sample prepared by the pretreatment of the alkaline solution then acid washing presented higher corrosion protection (~3 orders of magnitude higher than the sample without pretreatment). This pretreatment provided a more active surface for the deposition of the cerium layer and provided a more suitable substrate for film formation, and made a more uniform film. The surface morphology of samples confirmed that the best surface coverage was presented by alkaline solution then acid washing pretreatment. The presence of cerium in the (EDS) analysis demonstrated that pretreatment with the alkaline solution then acid washing resulted in a higher deposition of the cerium layer on the aluminum surface. After selecting the best surface pretreatment, various deposition times of cerium baths were investigated. The best deposition time was achieved at 10 min, and after this critical time, a cracked film formed on the surface that could not be protective. The corrosion resistance of cerium-based conversion coatings obtained by electrochemical tests were used for training three computational techniques (artificial neural network (ANN), adaptive neuro-fuzzy inference system (ANFIS), and support vector machine regression (SVMR)) based on Pretreatment-1 (acidic or alkaline cleaning: pH (1)), Pretreatment-2 (acidic or alkaline cleaning: pH (2)), and deposition time in the cerium bath as an input. Various statistical criteria showed that the ANFIS model (R2 = 0.99, MSE = 48.83, and MAE = 3.49) could forecast the corrosion behavior of a cerium-based conversion coating more accurately than other models. Finally, due to the robust performance of ANFIS in modeling, the effect of each parameter was studied.


Author(s):  
A. Contreras ◽  
R. G. Vogt ◽  
D. M. Oliveira ◽  
J. M. Schoenung ◽  
J. C. Gibeling

AbstractLow cycle fatigue (LCF) properties were investigated for a novel cryomilled AA5083 aluminum composite with duplex coarse and ultrafine grain sizes and reinforced with boron carbide particulates, referred to as trimodal material. Fully reversed cyclic tests were conducted under plastic strain control at plastic strain amplitudes from 0.15 to 0.6 pct using a constant plastic strain rate in a servo-hydraulic testing system. A nonlinear elastic modulus was used to calculate the elastic contribution to the measured total strain. The LCF performance of this trimodal material is compared to previous results for unreinforced AA5083 aluminum alloy with bimodal grain size (85/15 pct CM/UM) and its coarse-grained wrought counterpart, AA5083-H131. Stress response curves for the trimodal material revealed slow hardening until failure associated with the presence of particulate reinforcements. The very small asymmetry between tension and compression stresses reflects a lack of strain localization beyond the initial cycles. The trimodal and 85/15 pct CM/UM alloys have similar and superior low cycle fatigue strength compared to AA5083-H131. From the Coffin-Manson plot, the trimodal material has a shorter fatigue life than 85/15 pct CM/UM alloy and AA5083-H131 for high plastic strain amplitudes, but nearly identical life at low amplitudes. Microcracks were observed near the dominant crack on trimodal specimen surfaces at failure. Back-scattered images revealed that particulates altered the crack propagation direction; cracks nearly always propagated around particulates.


Author(s):  
Meysam Akbari ◽  
Manouchehr Fadavi Ardestani ◽  
Hamid Bakhtiari ◽  
Zahra Bakhtiari

The 5083 aluminium alloy is one of the alloys of the 5xxx series that is widely used in defence and shipbuilding industries. In this study, the 5083 aluminium alloy plates were evaluated through two friction stir welding and tungsten inert gas welding (TIG) by a double groove weld with a 30° angle and a 2mm gap for TIG and a simple butt weld for FSW. In this study and in addition to examining the samples' mechanical properties, the microstructure changes and the hardness were also reviewed. The results show that the FSW weld has better mechanical properties than the TIG weld due to fast welding speed. However, by preparing the pieces, the mechanical properties of TIG get closer to those of FSW. In the FSW welding in the weld nugget, the grains have a fine and co-axial structure, and an increase in the advance rate will reduce the inlet heat and make the grains smaller. Nevertheless, in TIG welding at high speeds, the grains become more extensive with increased inlet heat.


2020 ◽  
Vol 167 (14) ◽  
pp. 141502
Author(s):  
YanHan Liew ◽  
Cem Örnek ◽  
Jinshan Pan ◽  
Dominique Thierry ◽  
Sudesh Wijesinghe ◽  
...  

2020 ◽  
Vol 33 (10) ◽  
pp. 1369-1378
Author(s):  
Zhixiong Zhu ◽  
Xingxu Jiang ◽  
Gang Wei ◽  
Xiaogang Fang ◽  
Zhihong Zhong ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document