Effects of Exercise Training on Arterial Function in Type 2 Diabetes Mellitus

2013 ◽  
Vol 43 (11) ◽  
pp. 1191-1199 ◽  
Author(s):  
David Montero ◽  
Guillaume Walther ◽  
Eric Benamo ◽  
Antonia Perez-Martin ◽  
Agnès Vinet
Nutrients ◽  
2021 ◽  
Vol 13 (2) ◽  
pp. 570
Author(s):  
Marina Yazigi Solis ◽  
Guilherme Giannini Artioli ◽  
Bruno Gualano

Creatine is one of the most popular supplements worldwide, and it is frequently used by both athletic and non-athletic populations to improve power, strength, muscle mass and performance. A growing body of evidence has been identified potential therapeutic effects of creatine in a wide variety of clinical conditions, such as cancer, muscle dystrophy and neurodegenerative disorders. Evidence has suggested that creatine supplementation alone, and mainly in combination with exercise training, may improve glucose metabolism in health individuals and insulin-resistant individuals, such as in those with type 2 diabetes mellitus. Creatine itself may stimulate insulin secretion in vitro, improve muscle glycogen stores and ameliorate hyperglycemia in animals. In addition, exercise induces numerous metabolic benefits, including increases in insulin-independent muscle glucose uptake and insulin sensitivity. It has been speculated that creatine supplementation combined with exercise training could result in additional improvements in glucose metabolism when compared with each intervention separately. The possible mechanism underlying the effects of combined exercise and creatine supplementation is an enhanced glucose transport into muscle cell by type 4 glucose transporter (GLUT-4) translocation to sarcolemma. Although preliminary findings from small-scale trials involving patients with type 2 diabetes mellitus are promising, the efficacy of creatine for improving glycemic control is yet to be confirmed. In this review, we aim to explore the possible therapeutic role of creatine supplementation on glucose management and as a potential anti-diabetic intervention, summarizing the current knowledge and highlighting the research gaps.


2016 ◽  
Vol 23 (13) ◽  
pp. 1375-1382 ◽  
Author(s):  
Eva Steidle-Kloc ◽  
Martin Schönfelder ◽  
Edith Müller ◽  
Sebastian Sixt ◽  
Gerhard Schuler ◽  
...  

2002 ◽  
Vol 282 (2) ◽  
pp. E370-E375 ◽  
Author(s):  
Yuval Heled ◽  
Yair Shapiro ◽  
Yoav Shani ◽  
Dani S. Moran ◽  
Lea Langzam ◽  
...  

We hypothesized that exercise training might prevent diabetes mellitus in Psammomys obesus. Animals were assigned to three groups: high-energy diet (CH), high-energy diet and exercise (EH), and low-energy diet (CL). The EH group ran on a treadmill 5 days/wk, twice a day. After 4 wk, 93% of the CH group were diabetic compared with only 20% of the EH group. There was no difference in weight gain among the groups. Both EH and CH groups were hyperinsulinemic. Epididymal fat (% of body weight) was higher in the CH group than in either the EH and or the CL group. Protein kinase C (PKC)-δ activity and serine phosphorylation were higher in the EH group. No differences were found in tyrosine phosphorylation of the insulin receptor, insulin receptor substrate-1, and phosphatidylinositol 3-kinase among the groups. We demonstrate for the first time that exercise training effectively prevents the progression of diabetes mellitus type 2 in Psammomys obesus. PKC-δ may be involved in the adaptive effects of exercise in skeletal muscles that lead to the prevention of type 2 diabetes mellitus.


Metabolism ◽  
2010 ◽  
Vol 59 (6) ◽  
pp. 901-910 ◽  
Author(s):  
Styliani Goulopoulou ◽  
Tracy Baynard ◽  
Ruth M. Franklin ◽  
Bo Fernhall ◽  
Robert Carhart ◽  
...  

2019 ◽  
Vol 16 (4) ◽  
pp. 360-368
Author(s):  
Hani Zaidi ◽  
Rune Byrkjeland ◽  
Ida U Njerve ◽  
Sissel Åkra ◽  
Svein Solheim ◽  
...  

Background: Adipose tissue produces pro-inflammatory mediators involved in the atherosclerotic process. We investigated whether 12-month exercise training in patients with type 2 diabetes mellitus and coronary artery disease would reduce circulating levels and genetic expression of mediators in the interleukin-18, Caspase-1 and NLR pyrin domain containing 3 pathways. Correlations to glucometabolic variables; fasting glucose, HbA1c, duration of diabetes, insulin, C-peptide, insulin resistance (measured by homeostatic model assessment indexes – insulin resistance) and body mass index at baseline were further assessed. Methods: 137 patients (aged 41–81 years, 17.2% female participants) were included and randomized to a 12-month exercise programme or to a control group. Fasting blood and adipose tissue samples were taken at inclusion and after 12 months. Results: No statistically significant difference in changes of any variable between the intervention and the control group was found. At baseline, a positive correlation between insulin and homeostatic model assessment indexes – insulin resistance, interleukin-18 expression in adipose tissue and an inverse correlation between some glucometabolic variables and leukocyte expression of NLR pyrin domain containing 3 and Caspase-1 were observed. Conclusion: No significant effects of long-term exercise training were observed on the inflammasome-related mediators in our patients with combined coronary artery disease and type 2 diabetes mellitus. The observed correlations may indicate a pro-inflammatory state in adipose tissue by overweight and a compensatory downregulation of these mediators in circulating leucocytes.


Sign in / Sign up

Export Citation Format

Share Document