scholarly journals Correction to: Steady State Frequency Response Design of Finite Time Iterative Learning Control

2020 ◽  
Vol 67 (2) ◽  
pp. 814-814
Author(s):  
Benjamas Panomruttanarug ◽  
Richard W. Longman ◽  
Minh Q. Phan
Author(s):  
Xinyi Ge ◽  
Jeffrey L. Stein ◽  
Tulga Ersal

This paper focuses on norm-optimal iterative learning control (NO-ILC) for single-input-single-output (SISO) linear time invariant (LTI) systems and presents an infinite time horizon approach for a frequency-dependent design of NO-ILC weighting filters. Because NO-ILC is a model-based learning algorithm, model uncertainty can degrade its performance; hence, ensuring robust monotonic convergence (RMC) against model uncertainty is important. This robustness, however, must be balanced against convergence speed (CS) and steady-state error (SSE). The weighting filter design approaches for NO-ILC in the literature provide limited design freedom to adjust this trade-off. Moreover, even though qualitative guidelines to adjust the trade-off exist, a quantitative characterization of the trade-off is not yet available. To address these two gaps, a frequency-dependent weighting filter design is proposed in this paper and the robustness, convergence speed, and steady-state error are analyzed in the frequency domain. An analytical expression characterizing the fundamental trade-off of NO-ILC with respect to robustness, convergence speed, and steady-state error at each frequency is presented. Compared to the state of the art, a frequency-dependent filter design gives increased freedom to adjust the trade-off between robustness, convergence speed, and steady-state error because it allows the design to meet different performance requirements at different frequencies. Simulation examples are given to confirm the analysis and demonstrate the utility of the developed filter design technique.


Author(s):  
Xinyi Ge ◽  
Jeffrey L. Stein ◽  
Tulga Ersal

This paper presents a frequency domain analysis toward the robustness, convergence speed, and steady-state error for general linear time invariant (LTI) iterative learning control (ILC) for single-input-single-output (SISO) LTI systems and demonstrates the optimality of norm-optimal iterative learning control (NO-ILC) in terms of balancing the tradeoff between robustness, convergence speed, and steady-state error. The key part of designing LTI ILC updating laws is to choose the Q-filter and learning gain to achieve the desired robustness and performance, i.e., convergence speed and steady-state error. An analytical equation that characterizes these three terms for NO-ILC has been previously presented in the literature. For general LTI ILC updating laws, however, this relationship is still unknown. Adopting a frequency domain analysis approach, this paper characterizes this relationship for LTI ILC updating laws and, subsequently, demonstrates the optimality of NO-ILC in terms of balancing the tradeoff between robustness, convergence speed, and steady-state error.


Sign in / Sign up

Export Citation Format

Share Document