scholarly journals Homotopy perturbation transform method for solving fractional partial differential equations with proportional delay

SeMA Journal ◽  
2017 ◽  
Vol 75 (1) ◽  
pp. 111-125 ◽  
Author(s):  
Brajesh Kumar Singh ◽  
Pramod Kumar
2020 ◽  
Vol 19 ◽  
pp. 58-73
Author(s):  
Ahmad. A. H. Mtawal ◽  
Sameehah. R. Alkaleeli

In this paper, we suggest and analyze a technique by combining the Shehu transform method and the homotopy perturbation method. This method is called the Shehu transform homotopy method (STHM). This method is used to solve the time-fractional partial differential equations (TFPDEs) with proportional delay. The fractional derivative is described in Caputo's sense. The solutions proposed in the series converge rapidly to the exact solution. Some examples are solved to show the STHM is easy to apply.


2016 ◽  
Vol 2016 ◽  
pp. 1-7 ◽  
Author(s):  
Shehu Maitama

A hybrid analytical method for solving linear and nonlinear fractional partial differential equations is presented. The proposed analytical approach is an elegant combination of the Natural Transform Method (NTM) and a well-known method, Homotopy Perturbation Method (HPM). In this analytical method, the fractional derivative is computed in Caputo sense and the nonlinear term is calculated using He’s polynomial. The proposed analytical method reduces the computational size and avoids round-off errors. Exact solution of linear and nonlinear fractional partial differential equations is successfully obtained using the analytical method.


2018 ◽  
Vol 7 (3) ◽  
pp. 229-235 ◽  
Author(s):  
Amit Prakash ◽  
Hardish Kaur

AbstractIn present work, nonlinear fractional partial differential equations namely transport equation and Fokker-Planck equation involving local fractional differential operators, are investigated by means of the local fractional homotopy perturbation Sumudu transform method. The proposed method is a coupling of homotopy perturbation method with local fractional Sumudu transform and is used to describe the non-differentiable problems. Numerical simulation results are projected to show the efficiency of the proposed technique.


2011 ◽  
Vol 347-353 ◽  
pp. 463-466
Author(s):  
Xue Hui Chen ◽  
Liang Wei ◽  
Lian Cun Zheng ◽  
Xin Xin Zhang

The generalized differential transform method is implemented for solving time-fractional partial differential equations in fluid mechanics. This method is based on the two-dimensional differential transform method (DTM) and generalized Taylor’s formula. Results obtained by using the scheme presented here agree well with the numerical results presented elsewhere. The results reveal the method is feasible and convenient for handling approximate solutions of time-fractional partial differential equations.


2016 ◽  
Vol 5 (1) ◽  
pp. 86
Author(s):  
Naser Al-Qutaifi

<p>The idea of replacing the first derivative in time by a fractional derivative of order , where , leads to a fractional generalization of any partial differential equations of integer order. In this paper, we obtain a relationship between the solution of the integer order equation and the solution of its fractional extension by using the Laplace transform method.</p>


Sign in / Sign up

Export Citation Format

Share Document