scholarly journals Characteristics of soil seed banks at different geomorphic positions within the longitudinal sand dunes of the Gurbantunggut Desert, China

2017 ◽  
Vol 9 (3) ◽  
pp. 355-367 ◽  
Author(s):  
Fengqin Jia ◽  
Tashpolat Tiyip ◽  
Nan Wu ◽  
Changyan Tian ◽  
Yuanming Zhang
Forests ◽  
2021 ◽  
Vol 12 (5) ◽  
pp. 633
Author(s):  
Chunwu Song ◽  
Congjuan Li ◽  
Ümüt Halik ◽  
Xinwen Xu ◽  
Jiaqiang Lei ◽  
...  

Haloxylon ammodendron is crucially important for stabilizing sand dunes in the desert area of the Junggar Basin and has thus been widely planted in the oasis–desert ecotone for windbreak and sand fixation purposes since the 1980s. The spatial distribution and structural characteristics of Haloxylon ammodendron plantations of three different ages—planted in 1983 (36a), 1997 (22a), and 2004 (15a)—on the southwestern edge of the Gurbantünggüt Desert were studied. The results showed that the spatial distribution patterns for the different stages of growth showed a trend of cluster that was random during the transformation from seedlings to juvenile and mature trees. Forest density for the 15a, 22a, and 36a plantations was, respectively, 1110, 1189, and 1933 plants ha−1; the base stem diameter for the main forest layer was 5.85, 8.77, and 6.17 cm, respectively, and the tree height was concentrated in the range of 1.5–3.0 m, 2.0–3.5 m, and 1.5–2.5 m. In the regeneration layers, the proportion of seedlings was the largest in all three stand ages, followed by juvenile trees, and mature trees only appeared in the 22a plantation. The proportion of deadwood in the 36a forest was the highest, and there were no mature trees in the regeneration layer. These results indicate that the three Haloxylon ammodendron plantation stages were in the period of rising at 15a, stable and degenerate with increasing age at 22a, and at 36a the regeneration ability was very weak and presented degradation due to species competition for soil moisture, because of too many seedlings and mature plants. In this case, measures such as thinning could be taken to prevent rapid degradation and to accelerate regeneration when the stand age exceeds 20 years. Considering the sand fixation effect, the pressure of competition for water resources, and forest capacity for renewal and sustainability, the most suitable forest density in the Haloxylon ammodendron plantation would be 8.5–9 m2 per plant.


2016 ◽  
Vol 21 (10) ◽  
pp. 1670
Author(s):  
Fen-lian Li ◽  
Ting Li ◽  
Jie Su ◽  
Shuai Yang ◽  
Pei-ling Wang ◽  
...  

Flower-like galls have been observed on Haloxylon ammodendron and H. persicum in the Gurbantünggüt Desert in northwest China. The galls were induced by Aceria haloxylonis, a new species of Eriophyidae. The galls began as small protuberances at the base of new stems and on small branches. As they matured, the galls changed color from green to dark brown. Some galls on H. persicum became red. At maturity, the galls and the infected branches became desiccated. Adult females of A. haloxylonis overwintered in galls or in branch crevices of H. ammodendron and H. persicum. There were more galls on H. ammodendron than on H. persicum. Several ecological factors influenced gall number, including terrain, tree size, branch direction and slope aspect. H. ammodendron trees in gravel desert had more galls than trees at sand dune edges. Trees in the interdune space had the fewest galls. Large H. ammodendron trees had significantly more galls than small trees. Branches on the south side of the tree had more galls than branches on the north, east, and west sides. Terrain * tree size had significant interaction on gall number on H. ammodendron. H. persicum trees on low sand dunes had more galls than trees on high sand dunes and trees on sunny slopes had more galls than trees on shady slopes. There were more galls on large H. persicum trees than on medium-sized trees. Few galls were observed on small H. persicum trees. The number of galls on H. persicum was significantly affected by terrain, tree size and slope aspect. The terrain * slope aspect interaction and tree size * terrain interaction were also significantly. This study is important for the conservation and recovery of the ecological environment in the Gurbantünggüt Desert. 


Fire ◽  
2020 ◽  
Vol 3 (2) ◽  
pp. 15 ◽  
Author(s):  
Lynda D. Prior ◽  
David M. J. S. Bowman

Developing standardised classification of post-fire responses is essential for globally consistent comparisons of woody vegetation communities. Existing classification systems are based on responses of species growing in fire-prone environments. To accommodate species that occur in rarely burnt environments, we have suggested some important points of clarification to earlier schemes categorizing post-fire responses. We have illustrated this approach using several Australasian conifer species as examples of pyrophobic species. In particular, we suggest using the term “obligate seeder” for the general category of plants that rely on seed to reproduce, and qualifying this to “post-fire obligate seeder” for the narrower category of species with populations that recover from canopy fire only by seeding; the species are typically fire-cued, with large aerial or soil seed banks that germinate profusely following a fire, and grow and reproduce rapidly in order to renew the seed bank before the next fire.


2002 ◽  
Vol 39 (2) ◽  
pp. 279-293 ◽  
Author(s):  
R.S. Smith ◽  
R.S. Shiel ◽  
D. Millward ◽  
P. Corkhill ◽  
R.A. Sanderson

Sign in / Sign up

Export Citation Format

Share Document