Numerical simulation of turbulent forced convection of a power law fluid flow in an axially rotating pipe

Author(s):  
Mohamed Abdi ◽  
Abdelkader Noureddine ◽  
Meryem Ould-Rouiss
Author(s):  
Farhan Ahmed ◽  
Mazhar Iqbal ◽  
Noreen Sher Akbar

Here we numerically analyse the effects of viscous dissipation and Joule heating on forced convection heat transfer rate of electrically conducting magnetohydrodynamic, ( MHD) power law fluid flow through annular duct. Mathematical model is formulated for constant properties power law fluid with steady, incompressible and laminar fully developed flow assumptions. Heat transfer results are determined by taking constant heat flux with peripheral wall temperature “known as H1 thermal boundary condition” at the solid walls of the channel. It has been observed that the effect of viscous dissipation reduces due to enhance damping magnetic field effect by increasing the value of Hartman number, Ha, especially in the case of shear thickening fluids.


2018 ◽  
Vol 9 (7) ◽  
pp. 871-879
Author(s):  
Rajesh Shrivastava ◽  
R. S. Chandel ◽  
Ajay Kumar ◽  
Keerty Shrivastava and Sanjeet Kumar

2021 ◽  
Author(s):  
Amira Husni Talib ◽  
Ilyani Abdullah ◽  
Nik Nabilah Nik Mohd Naser

2012 ◽  
Vol 171-172 ◽  
pp. 67-82 ◽  
Author(s):  
Amir Nejat ◽  
Ehsan Mirzakhalili ◽  
Abbas Aliakbari ◽  
Mohammad S. Fallah Niasar ◽  
Koohyar Vahidkhah

Sign in / Sign up

Export Citation Format

Share Document