annular duct
Recently Published Documents


TOTAL DOCUMENTS

154
(FIVE YEARS 21)

H-INDEX

18
(FIVE YEARS 2)

Author(s):  
Qiao Lin ◽  
Nadine Allanic ◽  
Rémi Deterre ◽  
Pierre Mousseau ◽  
Manuel Girault

2021 ◽  
pp. 1-24
Author(s):  
Marcel C. Barbosa ◽  
Oscar M. H. Rodriguez

Abstract Proper sizing of flow lines in the upstream energy industry depends on accurate modeling of gas-liquid flow, which has a common occurrence in production wells and has been studied thoroughly for many decades. However, data of flow in duct geometries different from circular pipes and when the liquid viscosity is much higher than that of water are scarce. Proper prediction of pressure gradient, heat and mass transfer and corrosion depends on the accuracy of the model used to calculate the volumetric phase fraction. In pumped directional wells with inverted-shroud gravitational separators there is flow through an annular duct formed between the wells' casing and the separator itself that can have some tens of meters. The present work is an investigation on upward vertical/inclined high-viscous-oil/gas flow in a large and narrow annulus (30mm hydraulic diameter with an outer diameter equal to 155mm), using a radial geometry comparable to those found in real production systems. Air-water and air-oil mixtures, the latter with two oil viscosity ranges, were used as working fluids. The experimental test section used was 9.67m long positioned at 90° (vertical) and 45° and made of two concentric pipes. Flow pattern transitions from the literature were analyzed and compared to the collected experimental data. Drift-flux parameters were obtained from multiple working conditions. These drift-flux parameters were employed in the development of a novel flow-pattern-independent correlation, compared against the present data and other data sets from the literature in which other geometries and fluids were used. The predictions of the proposed drift-flux correlation are significantly superior in comparison to correlations selected from the literature in all cases.


2021 ◽  
Vol 198 ◽  
pp. 108130
Author(s):  
Saon Crispim Vieira ◽  
Diogo A.S. Custódio ◽  
William Monte Verde ◽  
Jorge Luiz Biazussi ◽  
Marcelo S. de Castro ◽  
...  

Author(s):  
Farhan Ahmed ◽  
Mazhar Iqbal ◽  
Noreen Sher Akbar

Here we numerically analyse the effects of viscous dissipation and Joule heating on forced convection heat transfer rate of electrically conducting magnetohydrodynamic, ( MHD) power law fluid flow through annular duct. Mathematical model is formulated for constant properties power law fluid with steady, incompressible and laminar fully developed flow assumptions. Heat transfer results are determined by taking constant heat flux with peripheral wall temperature “known as H1 thermal boundary condition” at the solid walls of the channel. It has been observed that the effect of viscous dissipation reduces due to enhance damping magnetic field effect by increasing the value of Hartman number, Ha, especially in the case of shear thickening fluids.


AIChE Journal ◽  
2021 ◽  
Author(s):  
Saon C. Vieira ◽  
Marcos R. M. Penteado ◽  
Marcelo S. de Castro ◽  
Antonio C. Bannwart

Sign in / Sign up

Export Citation Format

Share Document