A study on wire and arc additive manufacturing of low-carbon steel components: process stability, microstructural and mechanical properties

Author(s):  
Van Thao Le ◽  
Dinh Si Mai ◽  
Quang Huy Hoang
2021 ◽  
Vol 11 (4) ◽  
pp. 427-432
Author(s):  
Elena Astafurova ◽  
Evgeny Melnikov ◽  
Sergey Astafurov ◽  
Marina Panchenko ◽  
Kseniya Reunova ◽  
...  

2020 ◽  
Vol 58 (4) ◽  
pp. 461
Author(s):  
Van Thao Le ◽  
Quang Huy Hoang ◽  
Van Chau Tran ◽  
Dinh Si Mai ◽  
Duc Manh Dinh ◽  
...  

Wire arc additive manufacturing (WAAM) is nowadays gaining much attention from both the academic and industrial sectors for the manufacture of medium and large dimension metal parts because of its high deposition rate and low costs of equipment investment. In the literature, WAAM has been extensively investigated in terms of the shape and dimension accuracy of built parts. However, limited research has focused on the effects of welding parameters on the microstructural characteristics of parts manufactured by this process. In this paper, the effects of welding current in the WAAM process on the shape and the microstructure formation of built thin-walled low-carbon steel components were studied. For this purpose, the thin-walled low-carbon steel samples were built layer-by-layer on the substrates by using an industrial gas metal arc welding robot with different levels of welding current. The shape, microstructures and mechanical properties of built samples were then analyzed. The obtained results show that the welding current plays an important role in the shape stability, but does not significantly influence on the microstructure formation of built thin-walled samples. The increase of the welding current only leads to coarser grain size and resulting in decreasing the hardness of built materials in each zone of the built sample. The mechanical properties (hardness and tensile properties) of the WAAM-built thin-walled low-carbon steel parts are also comparable to those of wrought low-carbon steel, and to be adequate with real applications.


2020 ◽  
Vol 34 (22n24) ◽  
pp. 2040154
Author(s):  
Van Thao Le ◽  
Tien Long Banh ◽  
Duc Toan Nguyen ◽  
Van Tao Le

Wire arc additive manufacturing (WAAM) has received much attention for manufacturing metal parts with medium and large dimensions because of its high deposition rate and low production costs. In this study, the effects of the heat input on the microstructure formation of thin-wall low-carbon steel parts built by a WAAM process were addressed. The mechanical properties of built materials were also studied. The results indicate that the heat input significantly influences on the shape of built thin walls, but has slight effects on the microstructure evolution of built materials. The WAAM thin-wall low-carbon steel presents suitable microstructures and good tensile strengths (YS: 320 – 362 MPa, UTS: 429 – 479 MPa) that are adequate with industrial applications.


2017 ◽  
Vol 685 ◽  
pp. 168-177 ◽  
Author(s):  
Badirujjaman Syed ◽  
Sulthan Mohiddin Shariff ◽  
Gadhe Padmanabham ◽  
Shaumik Lenka ◽  
Basudev Bhattacharya ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document