The influence and a direct judgement method of the flow state in supercritical CO2 dry gas seal

Author(s):  
Cong Zhang ◽  
Jin-bo Jiang ◽  
Xu-dong Peng ◽  
Xiang-kai Meng ◽  
Ji-yun Li
2019 ◽  
Vol 137 ◽  
pp. 349-365 ◽  
Author(s):  
Z.M. Fairuz ◽  
Ingo Jahn ◽  
Razi Abdul-Rahman

RSC Advances ◽  
2021 ◽  
Vol 11 (28) ◽  
pp. 17197-17205
Author(s):  
Bin Liu ◽  
Yanling Wang ◽  
Lei Liang ◽  
Yijin Zeng

Thickened carbon dioxide flow state.


Author(s):  
Mohd Fairuz Zakariya ◽  
Ingo H. J. Jahn

The Queensland Geothermal Energy Centre of Excellence is investigating the use of supercritical CO2 closed loop Brayton cycles in the Concentrated Solar Thermal power cycle plant. One of the important components in the turbomachinery within the plant are seals. As the cycle is closed loop and operating at high pressures, dry gas seals have been recommended for future use in these systems. One of the main challenges of using supercritical CO2 dry gas seals is that operating conditions are near the critical point. In the supercritical region in the vicinity of the critical point (304 K, 7.4 MPa), CO2 behaves as a real-gas, exhibiting large and abrupt non-linear changes in fluid and transport properties and high densities. To correctly predict the seal operation and performance, the interaction between this real gas and the seal rotor (primary ring) and the seal stator (mating ring) need to analysed and investigated in detail, as they can lead to significant changes in flow and seal performance. Results from this paper show that increased centrifugal effects caused by higher gas densities can reduce the pressure in the sealing dam region. This adversely affects the loading capacity of the dry gas seal. However, it also benefits seal performances by reducing the leakage rate. The current work presents an investigation of the supercritical CO2 dry gas seals operating close to the critical point with an inlet pressure and temperature of 8.5Mpa and 370K respectively and a speed of 30000 RPM. Results highlighting the effects of the groove length or dam to groove ratio on the performance of the dry gas seal are presented. The seal is simulated using Computational Fluid Dynamics to study the flow behaviour of the supercitical CO2 in the dry gas seal. Supercritical CO2 fluid properties are based on the fluid database REFPROP. The numerical model was validated with previous work and good agreement was demonstrated.


Author(s):  
Azam Thatte ◽  
Voramon Dheeradhada

U.S. Department of Energy (DOE) has recently sponsored research programs to develop megawatt scale supercritical CO2 (sCO2) turbine for use in concentrated solar power (CSP) and fossil based applications. To achieve the CSP goal of power at $0.06/kW-hr LCOE and energy conversion efficiency > 50%, the sCO2 turbine relies critically on extremely low leakage film riding seals like dry gas seal (DGS). Although DGS technology has been used in other applications before. making it successful for stringent conditions of an sCO2 turbo-expander is challenging. This paper presents results from a multi-scale coupled physics model that predicts the performance of DGS under a typical sCO2 turbine mission cycle and addresses some of the risks specific to operation in sCO2. Real gas equations of state are incorporated in the models to capture large discontinuities in fluid properties close to the critical point. A novel experimental setup is developed to observe and characterize transition of CO2 through liquid-vapor and supercritical phases. Coupled fluid-structure-thermal interaction model investigates the effect of aerodynamic and thermal perturbations on the structural and rotordynamic instabilities. Dynamic instabilities arising from sonic transition in thin sCO2 film of DGS pose additional challenges while the large surface roughness changes due to sCO2 corrosion warrant further design considerations. Effectiveness of features like spiral grooves in converting fluid momentum into pressure rise in the thin film and also in achieving local flow reversals is investigated. Effect of various design features on the optimal performance is quantified and insights for a successful DGS operation in a sCO2 turbomachine are provided.


Sign in / Sign up

Export Citation Format

Share Document