The contribution of sucrose metabolism enzymes to sucrose accumulation in sugarcane (Saccharum officinarum L.) genotypes

2016 ◽  
Vol 21 (1) ◽  
pp. 76-82 ◽  
Author(s):  
Sagar Datir ◽  
Snehal Joshi
2007 ◽  
Vol 132 (5) ◽  
pp. 704-712 ◽  
Author(s):  
Yosef Burger ◽  
Arthur A. Schaffer

The relationship between sugar accumulation and sucrose metabolism enzyme activities was studied among seven genotypes of Cucumis melo L., covering the broad genetic range of sucrose accumulation found in the species. The primary determinant correlated with sucrose levels was the genetic variation for developmental loss of soluble acid invertase (AI) activity. Sucrose accumulation in the developing fruit began only when AI activity declined to less than an experimentally determined threshold value, and continued until removal of the fruit from the plant. In addition, the activities of sucrose phosphate synthase (SPS), sucrose synthase (SuSy), and neutral invertase (NI) were all positively correlated with sucrose accumulation among the genotypes. The low-sucrose-accumulating genotypes were characterized by low activities of each of the three enzymes, irrespective of their invertase activities. Final sucrose content was best predicted for each genotype by the number of days the fruit remained attached to the plant while characterized by “sucrose accumulation metabolism,” which was characterized primarily by AI activity less than threshold values, together with SPS, SuSy, and NI activities higher than threshold levels.


Sugar Tech ◽  
2013 ◽  
Vol 15 (2) ◽  
pp. 177-186 ◽  
Author(s):  
Ai-Qin Wang ◽  
Wen-Jing Huang ◽  
Jun-Qi Niu ◽  
Ming Liu ◽  
Li-Tao Yang ◽  
...  

2000 ◽  
Vol 27 (11) ◽  
pp. 1021 ◽  
Author(s):  
Hongmei Ma ◽  
Henrik H. Albert ◽  
Robert Paull ◽  
Paul H. Moore

Transgenic sugarcane (Saccharum officinarum L.) lines were created to express altered invertase isoform activity to elucidate the role(s) of invertase in the sucrose accumulation process. A sugarcane soluble acid invertase cDNA (SCINVm, AF062734) in the antisense orientation was used to decrease invertase activity. The Saccharomyces cerevisiae invertase gene (SUC2), fused with appropriate targeting elements, was used to increase invertase activity in the apoplast, cytoplasm and vacuole. A callus/liquid culture system was established to evaluate change in invertase activity and sugar concentration in the transgenic lines. Increased invertase activity in the apoplast led to rapid hydrolysis of sucrose and rapid increase of hexose in the medium. The cellular hexose content increased dramatically and the sucrose level decreased. Cells with higher cytoplasmic invertase activity did not show a significant change in the sugar composition in the medium, but did significantly reduce the sucrose content in the cells. Transformation with the sugarcane antisense acid invertase gene produced a cell line with moderate inhibition of soluble acid invertase activity and a 2-fold increase in sucrose accumulation. Overall, intracellular and extracellular sugar composition was very sensitive to the change in invertase activities. Lowering acid invertase activity increased sucrose accumulation.


Sugar Tech ◽  
2019 ◽  
Vol 22 (3) ◽  
pp. 504-517 ◽  
Author(s):  
Ke Shao ◽  
Zhenqing Bai ◽  
Manhong Li ◽  
Chao Yu ◽  
Jinwang Shao ◽  
...  

2019 ◽  
Vol 144 ◽  
pp. 455-465
Author(s):  
Jun-gang Wang ◽  
Ting-ting Zhao ◽  
Wen-zhi Wang ◽  
Cui-lian Feng ◽  
Xiao-yan Feng ◽  
...  

2010 ◽  
Vol 37 (12) ◽  
pp. 1161 ◽  
Author(s):  
Luguang Wu ◽  
Robert G. Birch

Transgenic sugarcane (Saccharum officinarum L. interspecific hybrids) line N3.2 engineered to express a vacuole-targeted sucrose isomerase was found to accumulate sucrose to twice the level of the background genotype Q117 in heterotrophic cell cultures, without adverse effects on cell growth. Isomaltulose levels declined over successive subcultures, but the enhanced sucrose accumulation was stable. Detailed physiological characterisation revealed multiple processes altered in line N3.2 in a direction consistent with enhanced sucrose accumulation. Striking differences from the Q117 control included reduced extracellular invertase activity, slower extracellular sucrose depletion, lower activities of symplastic sucrose-cleavage enzymes (particularly sucrose synthase breakage activity), and enhanced levels of symplastic hexose-6-phosphate and trehalose-6-phosphate (T6P) in advance of enhanced sucrose accumulation. Sucrose biosynthesis by sucrose phosphate synthase (SPS) and sucrose phosphate phosphatase (SPP) was substantially faster in assays conducted to reflect the elevation in key allosteric metabolite glucose-6-phosphate (G6P). Sucrose-non-fermenting-1-related protein kinase 1 (SnRK1, which typically activates sucrose synthase breakage activity while downregulating SPS in plants) was significantly lower in line N3.2 during the period of fastest sucrose accumulation. For the first time, T6P is also shown to be a negative regulator of SnRK1 activity from sugarcane sink cells, hinting at a control circuitry for parallel activation of key enzymes for enhanced sucrose accumulation in sugarcane.


1994 ◽  
Author(s):  
Arthur A. Schaffer ◽  
D. Mason Pharr ◽  
Joseph Burger ◽  
James D. Burton ◽  
Eliezer Zamski

The cucurbit family, including melon, translocates the galactosyl-sucrose oligosaccharides, raffinose and stachyose, in addition to sucrose, from the source leaves to the fruit sink. The metabolism of these photoassimilates in the fruit sink controls fruit growth and development, including the horticulturally important phenomenon of sucrose accumulation, which determines melon fruit sweetness. During this research project we have characterized the complete pathway of galactosyl sucrose metabolism in developing fruit, from before anthesis until maturity. We have also compared the metabolic pathway in scurose accumulating genotypes, as compared to non-accumulating genotypes. Furthermore, we studied the pathway in different fruit tissues, in response to pollination, and also analyzed the response of the individual steps of the pathway to perturbations such as low temperature and leaf removal. The results of our studies have led to the conclusion that generally galactosyl-sucrose metabolism functions as a coordinately controlled pathway. In one case, as an immediate response to the absence of pollination, the activity of a single enzyme, UDPglu pyrophosphorylase, was drastically reduced. However, during young fruit development, sucrose accumulation, and in response to perturbations of the system, groups of enzymes, rather than single enzymes, respond in a concerted manner. Our research has characterized in detail the initial enzymes of galactosyl-sucrose metabolism, including the galactosidases, galactokinase and the UDPgal- and UDPglu pyrophosphorylases. We have discovered a novel alkaline a-galactoside which hydrolyzes both stachyose and reaffinose and thereby may have solved the dilemma of cytosolic-sucrose metabolism, since prior to this research there was no known alkaline a-galactosidase capable of hydrolyzing raffinose.


Sign in / Sign up

Export Citation Format

Share Document