sugar metabolism
Recently Published Documents


TOTAL DOCUMENTS

773
(FIVE YEARS 294)

H-INDEX

49
(FIVE YEARS 7)

2022 ◽  
Vol 12 ◽  
Author(s):  
Hong Wang ◽  
Yunting Zhang ◽  
Ayla Norris ◽  
Cai-Zhong Jiang

Sugar metabolism not only determines fruit sweetness and quality but also acts as signaling molecules to substantially connect with other primary metabolic processes and, therefore, modulates plant growth and development, fruit ripening, and stress response. The basic region/leucine zipper motif (bZIP) transcription factor family is ubiquitous in eukaryotes and plays a diverse array of biological functions in plants. Among the bZIP family members, the smallest bZIP subgroup, S1-bZIP, is a unique one, due to the conserved upstream open reading frames (uORFs) in the 5′ leader region of their mRNA. The translated small peptides from these uORFs are suggested to mediate Sucrose-Induced Repression of Translation (SIRT), an important mechanism to maintain sucrose homeostasis in plants. Here, we review recent research on the evolution, sequence features, and biological functions of this bZIP subgroup. S1-bZIPs play important roles in fruit quality, abiotic and biotic stress responses, plant growth and development, and other metabolite biosynthesis by acting as signaling hubs through dimerization with the subgroup C-bZIPs and other cofactors like SnRK1 to coordinate the expression of downstream genes. Direction for further research and genetic engineering of S1-bZIPs in plants is suggested for the improvement of quality and safety traits of fruit.


2022 ◽  
Vol 23 (2) ◽  
pp. 822
Author(s):  
Yu He ◽  
Ruifan Chen ◽  
Ying Yang ◽  
Guichan Liang ◽  
Heng Zhang ◽  
...  

Camellia oleifera is a widely planted woody oil crop with economic significance because it does not occupy cultivated land. The sugar-derived acetyl-CoA is the basic building block in fatty acid synthesis and oil synthesis in C. oleifera fruit; however, sugar metabolism in this species is uncharacterized. Herein, the changes in sugar content and metabolic enzyme activity and the transcriptomic changes during C. oleifera fruit development were determined in four developmental stages (CR6: young fruit formation; CR7: expansion; CR9: oil transformation; CR10: ripening). CR7 was the key period of sugar metabolism since it had the highest amount of soluble sugar, sucrose, and glucose with a high expression of genes related to sugar transport (four sucrose transporters (SUTs) or and one SWEET-like gene, also known as a sugar, will eventually be exported transporters) and metabolism. The significant positive correlation between their expression and sucrose content suggests that they may be the key genes responsible for sucrose transport and content maintenance. Significantly differentially expressed genes enriched in the starch and sucrose metabolism pathway were observed in the CR6 versus CR10 stages according to KEGG annotation. The 26 enriched candidate genes related to sucrose metabolism provide a molecular basis for further sugar metabolism studies in C. oleifera fruit.


2022 ◽  
Vol 2022 ◽  
pp. 1-10
Author(s):  
Yang Du ◽  
Ji-Hui Dong ◽  
Lei Chen ◽  
Hua Liu ◽  
Guang-En Zheng ◽  
...  

Background. Exosomes are extracellular vesicles that play important roles in various physiological and pathological functions. Previous studies have demonstrated that exosome-derived contents are promising biomarkers to inform the pathogenesis and diagnosis of major depressive disorder and schizophrenia. Methods. We used ultraperformance liquid chromatography-tandem mass spectrometry to analyze the differentially expressed metabolites in serum exosomes of patients with bipolar disorder (BD) and evaluated the potential of exosomal metabolites as biomarkers for BD. Results. Our results showed 26 differentially expressed serum exosomal metabolites in patients with BD ( n = 32 ) when compared with healthy control (HC) subjects ( n = 40 ), and these differentially expressed metabolites were enriched in pathways related to sugar metabolism. We then utilized random forest classifier and identified 15 exosomal metabolites that can be used to classify samples from patients with BD and HC subjects with 0.838 accuracy (95% CI, 0.604–1.00) in the training set of participants. These 15 metabolites showed excellent performance in differentiating between patients with BD and HC subjects in the testing set of participants, with 0.971 accuracy (95% CI, 0.865–1.00). Importantly, the 15 exosomal metabolites also showed good to excellent performance in differentiating between BD patients and other major psychiatric diseases (major depressive disorder and schizophrenia). Conclusion. Collectively, our findings for the first time revealed a potential role of exosomal metabolite dysregulations in the onset and/or development of BD and suggested that blood exosomal metabolites are strong candidates to inform the diagnosis of BD.


2022 ◽  
Author(s):  
Ashkan Golshani ◽  
Sasi Kumar Jagadeesan ◽  
Mustafa Algafari ◽  
Maryam Hajikarimlou ◽  
Sarah Takallou ◽  
...  

Abstract Lithium chloride (LiCl) is a widely used and extensively researched drug for the treatment of bipolar disorder (BD). As a result, LiCl has been the subject of research studying its toxicity, mode of action, and downstream cellular responses. LiCl has been shown to influence cell signalling and signalling transduction pathways through protein kinase C and glycogen synthase kinase-3 in mammalian cells. LiCl's significant downstream effects on the translational pathway necessitate further investigation. In yeast, LiCl is found to lower the activity and alter the expression of PGM2, a gene encoding a sugar-metabolism phosphoglucomutase. When phosphoglucomutase activity is reduced in the presence of galactose, intermediates of galactose metabolism aggregate, causing cell sensitivity to LiCl. In this study, we identified that deleting the genes PEX11 and RIM20 increases yeast LiCl sensitivity. We further show that PEX11 and RIM20 regulate the expression of PGM2 mRNA at the translation level. The observed alteration of translation seems to target the structured 5′-untranslated region (5′-UTR) of the PGM2 mRNA.


2022 ◽  
Author(s):  
Tamar Szoke ◽  
Nitsan Albocher ◽  
Omer Goldberger ◽  
Meshi Barsheshet ◽  
Anat Nussbaum-Shochat ◽  
...  

Liquid-liquid phase separation (LLPS) of proteins was shown in recent years to regulate spatial organization of cell content without the need for membrane encapsulation in eukaryotes and prokaryotes. Yet evidence for the relevance of LLPS for bacterial cell functionality is largely missing. Here we show that the sugar metabolism-regulating clusters, recently shown by us to assemble in the E. coli cell poles by means of the novel protein TmaR, are formed via LLPS. A mutant screen uncovered residues and motifs in TmaR that are important for its condensation. Upon overexpression, TmaR undergoes irreversible liquid-to-solid transition, similar to the transition of disease-causing proteins in human, which impairs bacterial cell morphology and proliferation. Not only does RNA contribute to TmaR phase separation, but by ensuring polar localization and stability of flagella-related transcripts, TmaR enables cell motility and biofilm formation, thus providing a linkage between LLPS and major survival strategies in bacteria.


2022 ◽  
Vol 12 ◽  
Author(s):  
Xinlei Guo ◽  
Jianli Liang ◽  
Runmao Lin ◽  
Lupeng Zhang ◽  
Jian Wu ◽  
...  

Chinese cabbage is an important leaf heading vegetable crop. At the heading stage, its leaves across inner to outer show significant morphological differentiation. However, the genetic control of this complex leaf morphological differentiation remains unclear. Here, we reported the transcriptome profiling of Chinese cabbage plant at the heading stage using 24 spatially dissected tissues representing different regions of the inner to outer leaves. Genome-wide transcriptome analysis clearly separated the inner leaf tissues from the outer leaf tissues. In particular, we identified the key transition leaf by the spatial expression analysis of key genes for leaf development and sugar metabolism. We observed that the key transition leaves were the first inwardly curved ones. Surprisingly, most of the heading candidate genes identified by domestication selection analysis obviously showed a corresponding expression transition, supporting that key transition leaves are related to leafy head formation. The key transition leaves were controlled by a complex signal network, including not only internal hormones and protein kinases but also external light and other stimuli. Our findings provide new insights and the rich resource to unravel the genetic control of heading traits.


2022 ◽  
Vol 22 (1) ◽  
Author(s):  
Xiaoya Qin ◽  
Yue Yin ◽  
Jianhua Zhao ◽  
Wei An ◽  
Yunfang Fan ◽  
...  

Abstract Background High soil salinity often adversely affects plant physiology and agricultural productivity of almost all crops worldwide, such as the crude drug known as wolfberry. However, the mechanism of this action in wolfberry is not fully understood yet. Results Here in this study, we studied different mechanisms potentially in Chinese wolfberry (Lycium chinese, LC) and black wolfberry (L. ruthenicum, LR) under salinity stress, by analyzing their transcriptome, metabolome, and hormone changes. The hormone detection analysis revealed that the ABA content was significantly lower in LR than LC under normal condition, and increased sharply under salinity stress in LR but not in LC. The transcriptome analysis showed that the salinity-responsive genes in wolfberry were mainly enriched in MAPK signaling, amino sugar and nucleotide sugar metabolism, carbon metabolism, and plant hormone signal transduction pathways in LC, while mainly related to carbon metabolism and protein processing in endoplasmic reticulum in LR. Metabolome results indicated that LR harbored higher flavone and flavonoid contents than LC under normal condition. However, the flavone and flavonoid contents were hardly changed in LR, but increased substantially in LC when exposed to salinity stress. Conclusions Our results adds ABA and flavone to mechanism understanding of salinity tolerance in wolfberry. In addition, flavone plays a positive role in resistance to salinity stress in wolfberry.


2022 ◽  
Vol 12 (1) ◽  
pp. 428
Author(s):  
Ki Hyun Nam

Glucose isomerase (GI, also known as xylose isomerase) reversibly isomerizes D-glucose and D-xylose to D-fructose and D-xylulose, respectively. GI plays an important role in sugar metabolism, fulfilling nutritional requirements in bacteria. In addition, GI is an important industrial enzyme for the production of high-fructose corn syrup and bioethanol. This review introduces the functions, structure, and applications of GI, in addition to presenting updated information on the characteristics of newly discovered GIs and structural information regarding the metal-binding active site of GI and its interaction with the inhibitor xylitol. This review provides an overview of recent advancements in the characterization and engineering of GI, as well as its industrial applications, and will help to guide future research in this field.


Genes ◽  
2021 ◽  
Vol 13 (1) ◽  
pp. 60
Author(s):  
Jubina Benny ◽  
Antonio Giovino ◽  
Francesco Paolo Marra ◽  
Bipin Balan ◽  
Federico Martinelli ◽  
...  

Pistacia vera (L.) is an alternate bearing species. The tree produces axillary inflorescence buds every year. Still, they abscise in “ON” overloaded shoots, causing a limited production in the following “OFF” year, causing a significant and unfavorable production fluctuation. In this work, we carried out de novo discovery and transcriptomic analysis in fruits of “ON” and “OFF” shoots of the cultivar Bianca. We also investigated whether the fruit signaling pathway and hormone biosynthesis directly or indirectly linked to the premature fall of the inflorescence buds causing alternate bearing. We identified 1536 differentially expressed genes (DEGs) in fruits of “ON” vs. “OFF” shoots, which are involved primarily in sugar metabolism, plant hormone pathways and transcription factors. The premature bud abscission linked to the phenomenon is attributable to a lack of nutrients (primarily sugar) and the possible competition between the same branches’ sinks (fruits vs. inflorescence buds). Hormone pathways are involved as a response to signals degradation and remobilization of carbon and nutrients due to the strengthening of the developing embryos. Genes of the secondary metabolism and transcription factors are also involved in tailoring the individual branches response to the nutritional stress and sink competition. Crosstalk among sugar and various hormone-related genes, e.g., ethylene, auxin, ABA and cytokinin, were determined. The discovery of putative biomarkers like callose synthase 5, trehalose-6-phosphate synthase, NAD(P)-linked oxidoreductase and MIOX2, Jasmonate, and salicylic acid-related genes can help to design precision farming practices to mitigate the alternate bearing phenomenon to increase farming profitability. The aim of the analysis is to provide insight into the gene expression profiling of the fate of “ON” and “OFF” fruits associated with the alternate bearing in the pistachio.


Sign in / Sign up

Export Citation Format

Share Document