strong rock
Recently Published Documents


TOTAL DOCUMENTS

19
(FIVE YEARS 8)

H-INDEX

4
(FIVE YEARS 1)

Energies ◽  
2021 ◽  
Vol 14 (21) ◽  
pp. 7287
Author(s):  
Xinxin Zhou ◽  
Zhenhua Ouyang ◽  
Ranran Zhou ◽  
Zhenxing Ji ◽  
Haiyang Yi ◽  
...  

In order to prevent the multi-dynamic disasters induced by rock burst and roof water inrush in strong rock burst coal seams under multi-aquifers, such as is the case with the 207 working face in the Tingnan coal mine considered in this study, the exhibited characteristics of two types of dynamic disasters, namely rock burst and water inrush, were analyzed. Based on the lithology and predicted caving height of the roof, the contradiction between rock burst and water inrush was analyzed. In light of these analyses, an integrated method, roof pre-splitting at a high position and shattering at a low position, was proposed. According to the results of numerical modelling, pre-crack blasting at higher rock layers enables a cantilever roof cave in time, thereby reducing the risk of rock burst, and pre-crack blasting at underlying rock layers helps increase the crushing degree of the rock, which is beneficial for decreasing the caving height of rock layers above goaf, thereby preventing the occurrence of water inrush. Finally, the proposed method was applied in an engineering case, and the effectiveness of this method for prevention and control of multi-dynamics disasters was evaluated by field observations of the caving height of rock layers and micro-seismic monitoring. As a result, the proposed method works well integrally to prevent and control rock burst and water inrush.


Author(s):  
Maria Lia Napoli ◽  
Monica Barbero ◽  
Claudio Scavia

AbstractA wide range of heterogeneous geological units composed of strong rock blocks enclosed in a bonded matrix of fine texture exists worldwide. Such geomaterials belong to geotechnically complex formations and are often referred to as bimrocks (block-in-matrix rocks) or bimsoils (block-in-matrix soils), as a function of their matrix characteristics and the interface strength between the matrix and blocks. Stability problems occurring in such complex geomaterials have been analysed almost exclusively by means of deterministic approaches and with the aim of investigating the effects of variable block contents on their mechanical behaviour. However, bimrocks and bimsoils can present very different internal block-in-matrix arrangements and properties according to their forming process and, consequently, significantly dissimilar mechanical behaviours. Therefore, the aim of this paper was to statistically investigate and compare the stability of theoretical slopes in the most widespread bimrock formations, i.e. sedimentary and tectonic melanges. These formations are characterised by substantial differences in their rock inclusion geometry. To this aim, a great number of 2D slope models were generated to enclose blocks with variable shapes, dimensions, arrangements, inclinations and contents. To obtain statistically based results, fifteen configurations were analysed for each block content and geometrical configuration considered. The results obtained indicate that block shapes and orientations significantly affect the stability of slopes in bimrocks only when the block contents are greater than 40%. Moreover, it is demonstrated that blocks inclined 0° to the horizontal provide the most tortuous and irregular failure surfaces and, consequently, the highest safety factors.


Energies ◽  
2021 ◽  
Vol 14 (10) ◽  
pp. 2748
Author(s):  
Waloski Radosław ◽  
Korzeniowski Waldemar ◽  
Bołoz Łukasz ◽  
Rączka Waldemar

Modern technologies need more mineral resources for energy generation, metallurgical products, chemicals, and many other uses. These resources are usually extracted from the Earth’s crust. Many engineering underground-space infrastructures are left after mining activity, with their very interesting features such as very large storage capacities (e.g., for hydrocarbons, hydrogen, radioactive, or other waste), and long-term geomechanical stability. Our original experiments were carried out in the conditions of an underground metal ore mine where typical mobile drilling rigs, additionally equipped with a set of sensors for recording signals as effects of rock–drill interaction were used for the research testing. A series of boreholes with diameters of Ø38 and lengths of up to 9 m in the rock medium were drilled in the “weak” and “strong” rock masses, and the frequency spectra of their signals were analyzed with the use of the fast Fourier transform (FFT) and short-time Fourier transform (STFT) algorithms. According to the proposed idealized theoretical model of the disturbance and the distinctive acceleration value of the drilling characteristic, the location of the critical discontinuities in the roof of the excavation were recognized. The most important advantage of the proposed method is the quantity and objective monitoring method for detection of a critical rock mass defect (discontinuity) that is significant for the potential functionality of underground workings as a potential energy storage room and their reinforcement.


2021 ◽  
pp. 22-27
Author(s):  
A. S. Batugin ◽  

The problem connected with rock bursts and induced earthquakes is yet one of the most critical in the mining regions. The manmade nature of disastrous earthquakes induced in the areas of the heaviest impact on the subsoil is being widely discussed. The main argument against the manmade genesis of such earthquakes is their great depths and high energies. The general features of the induced earthquakes are considered. The displacement directions of the walls of large tectonic faults during such events are analyzed. The sizes of focal zones are estimated and related with sizes of geodynamcially active blocks in the Earth’s crust. The location of hypocenters of geodynamic events relative to the manmade impact zones is studied. The found homogeny of strong rock bursts and induced earthquakes is explained by the interaction of local and regional (global) geodynamic processes. The critical stress state of the upper Earth’s crust having hierarchical block structure is considered as the basis of such interaction. When focal zones of rock bursts and induced earthquakes have sizes of hundreds of meters or a few kilometers, the initiation zones of such events reaches many kilometers in size, is commensurable with the Earth’s crust blocks and is larger than the mining impact zone. Therefore, displacements along large faults are the part of a tectonic process, i.e. displacement directions along large faults during strong rock bursts are correlated with the regional stress field.


2020 ◽  
Vol 4 ◽  
pp. 69-84
Author(s):  
E.E. Kasparyan ◽  
◽  
N.N. Kuznetsov ◽  
A.N. Shokov ◽  
A.K. Pak ◽  
...  

2020 ◽  
Vol 4 ◽  
pp. 58-68 ◽  
Author(s):  
N.O. Berdinova ◽  
◽  
S.A. Sedina ◽  
L.S. Shamganova ◽  
E.S. Kalyuzhny ◽  
...  

2016 ◽  
Vol 5 (2) ◽  
pp. 32 ◽  
Author(s):  
Matsee Kleepmek ◽  
Supattra K Hamrat ◽  
Kittitep Fuenkajorn

Triaxial shear tests are performed to assess the effects of displacement velocity and confining pressure on shear strengths and dilations of tension-induced fractures and smooth saw-cut surfaces prepared in granite, sandstone and marl specimens. A polyaxial load frame is used to apply confining pressures between 1 and 18 MPa with displacement velocities ranging from 1.15×10-5 to 1.15×10-2 mm/s. The results indicate that the shearing resistances of smooth saw-cut surfaces tend to be independent of the displacement velocity and confining pressure. Under each confinement the peak and residual shear strengths and dilation rates of rough fractures increase with displacement velocities. The sheared-off areas increase when the confining pressure increases, and the displacement rate decreases. The velocity-dependent shear strengths tend to act more under high confining pressures for the rough fractures in strong rock (granite) than for the smoother fractures in weaker rocks (sandstone and marl). An empirical criterion that explicitly incorporates the effects of shear velocity is proposed to describe the peak and residual shear strengths. The criterion fits well to the test results for the three tested rocks.


Sign in / Sign up

Export Citation Format

Share Document