Recent Advances in the Inference of Gene Flow from Population Genomic Data

2019 ◽  
Vol 5 (3) ◽  
pp. 107-115 ◽  
Author(s):  
Richard H. Adams ◽  
Drew R. Schield ◽  
Todd A. Castoe
2020 ◽  
Vol 13 (10) ◽  
pp. 2821-2835
Author(s):  
Lei Chen ◽  
Jing‐Tao Sun ◽  
Peng‐Yu Jin ◽  
Ary A. Hoffmann ◽  
Xiao‐Li Bing ◽  
...  

2020 ◽  
Author(s):  
Thomas L Schmidt ◽  
T. Swan ◽  
Jessica Chung ◽  
Stephan Karl ◽  
Samuel Demok ◽  
...  

AbstractPopulation genomic approaches can characterise dispersal across a single generation through to many generations in the past, bridging the gap between individual movement and intergenerational gene flow. These approaches are particularly useful when investigating dispersal in recently altered systems, where they provide a way of inferring long-distance dispersal between newly established populations and their interactions with existing populations. Human-mediated biological invasions represent such altered systems which can be investigated with appropriate study designs and analyses. Here we apply temporally-restricted sampling and a range of population genomic approaches to investigate dispersal in a 2004 invasion of Aedes albopictus (the Asian tiger mosquito) in the Torres Strait Islands (TSI) of Australia. We sampled mosquitoes from 13 TSI villages simultaneously and genotyped 373 mosquitoes at genome-wide single nucleotide polymorphisms (SNPs): 331 from the TSI, 36 from Papua New Guinea (PNG), and 4 incursive mosquitoes detected in uninvaded regions. Within villages, spatial genetic structure varied substantially but overall displayed isolation by distance and a neighbourhood size of 232–577. Close kin dyads revealed recent movement between islands 31–203 km apart, and deep learning inferences showed incursive Ae. albopictus had travelled to uninvaded regions from both adjacent and non-adjacent islands. Private alleles and a coancestry matrix indicated direct gene flow from PNG into nearby islands. Outlier analyses also detected four linked alleles introgressed from PNG, with the alleles surrounding 12 resistance-associated cytochrome P450 genes. By treating dispersal as both an intergenerational process and a set of discrete events, we describe a highly interconnected invasive system.


Author(s):  
Jesper Svedberg ◽  
Vladimir Shchur ◽  
Solomon Reinman ◽  
Rasmus Nielsen ◽  
Russell Corbett-Detig

AbstractAdaptive introgression - the flow of adaptive genetic variation between species or populations - has attracted significant interest in recent years and it has been implicated in a number of cases of adaptation, from pesticide resistance and immunity, to local adaptation. Despite this, methods for identification of adaptive introgression from population genomic data are lacking. Here, we present Ancestry_HMM-S, a Hidden Markov Model based method for identifying genes undergoing adaptive introgression and quantifying the strength of selection acting on them. Through extensive validation, we show that this method performs well on moderately sized datasets for realistic population and selection parameters. We apply Ancestry_HMM-S to a dataset of an admixed Drosophila melanogaster population from South Africa and we identify 17 loci which show signatures of adaptive introgression, four of which have previously been shown to confer resistance to insecticides. Ancestry_HMM-S provides a powerful method for inferring adaptive introgression in datasets that are typically collected when studying admixed populations. This method will enable powerful insights into the genetic consequences of admixture across diverse populations. Ancestry_HMM-S can be downloaded from https://github.com/jesvedberg/Ancestry_HMM-S/.


Genetics ◽  
2017 ◽  
Vol 206 (1) ◽  
pp. 105-118 ◽  
Author(s):  
Matthew S. Ackerman ◽  
Parul Johri ◽  
Ken Spitze ◽  
Sen Xu ◽  
Thomas G. Doak ◽  
...  

2020 ◽  
Vol 29 (19) ◽  
pp. 3649-3666
Author(s):  
Lisa Cooper ◽  
Lynsey Bunnefeld ◽  
Jack Hearn ◽  
James M. Cook ◽  
Konrad Lohse ◽  
...  

2020 ◽  
Vol 107 (2) ◽  
pp. 175-182
Author(s):  
Simon Easteal ◽  
Ruth M. Arkell ◽  
Renzo F. Balboa ◽  
Shayne A. Bellingham ◽  
Alex D. Brown ◽  
...  

2017 ◽  
Vol 90 ◽  
pp. 146-154 ◽  
Author(s):  
Ioannis Kavakiotis ◽  
Patroklos Samaras ◽  
Alexandros Triantafyllidis ◽  
Ioannis Vlahavas

Genetics ◽  
2017 ◽  
Vol 207 (1) ◽  
pp. 297-309 ◽  
Author(s):  
Tom R. Booker ◽  
Rob W. Ness ◽  
Peter D. Keightley

Sign in / Sign up

Export Citation Format

Share Document