Design for Additive Manufacturing of Functionally Graded Lattice Structures: A Design Method with Process Induced Anisotropy Consideration

Author(s):  
Cong Hong Phong Nguyen ◽  
Youngdoo Kim ◽  
Young Choi
Author(s):  
S Mantovani ◽  
GA Campo ◽  
M Giacalone

Structural engineering in the automotive industry has moved towards weight reduction and passive safety whilst maintaining a good structural performance. The development of Additive Manufacturing (AM) technologies has boosted design freedom, leading to a wide range of geometries and integrating functionally-graded lattice structures. This paper presents three AM-oriented numerical optimization methods, aimed at optimizing components made of: i) bulk material, ii) a combination of bulk material and graded lattice structures; iii) an integration of solid, lattice and thin-walled structures. The optimization methods were validated by considering the steering column support of a mid-rear engine sports car, involving complex loading conditions and shape. The results of the three methods are compared, and the advantages and disadvantages of the solutions are discussed. The integration between solid, lattice thin-walled structures produced the best results, with a mass reduction of 49.7% with respect to the existing component.


2017 ◽  
Vol 13 ◽  
pp. 1-13 ◽  
Author(s):  
A.O. Aremu ◽  
J.P.J. Brennan-Craddock ◽  
A. Panesar ◽  
I.A. Ashcroft ◽  
R.J.M. Hague ◽  
...  

Author(s):  
Jenmy Zimi Zhang ◽  
Conner Sharpe ◽  
Carolyn Conner Seepersad

Abstract This paper presents a computationally tractable approach for designing lattice structures for stiffness and strength. Yielding in the mesostructure is determined by a worst-case stress analysis of the homogenization simulation data. This provides a physically meaningful, generalizable, and conservative way to estimate structural failure in three-dimensional functionally graded lattice structures composed of any unit cell architectures. Computational efficiency of the design framework is ensured by developing surrogate models for the unit cell stiffness and strength as a function of density. The surrogate models are then used in the coarse-scale analysis and synthesis. The proposed methodology further uses a compact representation of the material distribution via B-splines, which reduces the size of the design parameter space while ensuring a smooth density variation that is desirable for manufacturing. The proposed method is demonstrated in compliance minimization studies using two types of unit cells with distinct mechanical properties. The effects of B-spline mesh refinement and the presence of a stress constraint on the optimization results are also investigated.


2020 ◽  
Vol 142 (9) ◽  
Author(s):  
Jenmy Zimi Zhang ◽  
Conner Sharpe ◽  
Carolyn Conner Seepersad

Abstract This paper presents a computationally tractable approach for designing lattice structures for stiffness and strength. Yielding in the mesostructure is determined by a worst-case stress analysis of the homogenization simulation data. This provides a physically meaningful, generalizable, and conservative way to estimate structural failure in three-dimensional functionally graded lattice structures composed of any unit cell architectures. Computational efficiency of the design framework is ensured by developing surrogate models for the unit cell stiffness and strength as a function of density. The surrogate models are then used in the coarse-scale analysis and synthesis. The proposed methodology further uses a compact representation of the material distribution via B-splines, which reduces the size of the design parameter space while ensuring a smooth density variation that is desirable for manufacturing. The proposed method is demonstrated in compliance with minimization studies using two types of unit cells with distinct mechanical properties. The effects of B-spline mesh refinement and the presence of a stress constraint on the optimization results are also investigated.


Author(s):  
Bradley Hanks ◽  
Mary Frecker

Abstract Additive manufacturing is a developing technology that enhances design freedom at multiple length scales, from the macroscale, or bulk geometry, to the mesoscale, such as lattice structures, and even down to tailored microstructure. At the mesoscale, lattice structures are often used to replace solid sections of material and are typically patterned after generic topologies. The mechanical properties and performance of generic unit cell topologies are being explored by many researchers but there is a lack of development of custom lattice structures, optimized for their application, with considerations for design for additive manufacturing. This work proposes a ground structure topology optimization method for systematic unit cell optimization. Two case studies are presented to demonstrate the approach. Case Study 1 results in a range of unit cell designs that transition from maximum thermal conductivity to minimization of compliance. Case Study 2 shows the opportunity for constitutive matching of the bulk lattice properties to a target constitutive matrix. Future work will include validation of unit cell modeling, testing of optimized solutions, and further development of the approach through expansion to 3D and refinement of objective, penalty, and constraint functions.


Sign in / Sign up

Export Citation Format

Share Document