topology optimisation
Recently Published Documents


TOTAL DOCUMENTS

315
(FIVE YEARS 102)

H-INDEX

22
(FIVE YEARS 4)

2022 ◽  
Author(s):  
Dan-Adrian Corfar ◽  
Konstantinos Daniel Tsavdaridis

Hot-rolled steel Modular Building Systems (MBS) represent the highest level of Off-Site Con-struction (OSC) in which prefabricated, and often prefinished steel modules are delivered to site on a ‘just-in-time’ basis and assembled into complete building systems. Besides the already well-known advantages such as tight tolerance control, reduced on-site human intervention and speedier construction times, the context of the ongoing climate emergency has brought forward the connection between circular economy (CE) and opportunities of steel MBS for disassembly and reuse. However, the use of hybrid structural systems, the functionality of inter-modular connections, and the effects of complex and demanding load transfer paths often question the actual prospects of deconstruction, repair, relocation, or reuse. So far, inter-module connections have been heavily influenced by conventional design methods, relying on bolts, welds or even prestressing strands, which require laborious on-site tasks and simplifying design assumptions, often raising uncertainty about structural behaviour of modular buildings.In an attempt to mitigate limitations of existing systems, a new inter-module connection was envisaged, inspired from the inter-locking method of joining. At the forefront of the develop-ment process, topology optimisation (TO) was adopted in the conceptual design of the main component of the joint, assisting the morphogenesis process which provided the final configu-ration of the novel system. The structural performance of the newly proposed connection was assessed through a series of static monotonic and quasi-static cyclic FE analyses. Results re-vealed that in terms of load-bearing capacity, ductility and energy dissipation ability, the struc-tural behaviour of the new connection was comparable to that of other inter-module joints in literature, while managing to tackle their limitations by introducing both an easy-to-install and easy-to-disassemble configuration with promising opportunities for reuse, further demonstrat-ing that inter-locking joints could be worthy competitors for traditional means of attachment in the future of modular construction.


2022 ◽  
Vol 51 ◽  
pp. 101472
Author(s):  
Jun Yan ◽  
Qi Zhang ◽  
Qi Xu ◽  
Zhirui Fan ◽  
Haijiang Li ◽  
...  

Sensors ◽  
2021 ◽  
Vol 22 (1) ◽  
pp. 46
Author(s):  
Dennis Höfflin ◽  
Maximilian Rosilius ◽  
Philipp Seitz ◽  
Andreas Schiffler ◽  
Jürgen Hartmann

Nowadays, additive manufacturing processes are becoming more and more appealing due to their production-oriented design guidelines, especially with regard to topology optimisation and minimal downstream production depth in contrast to conventional technologies. However, a scientific path in the areas of quality assurance, material and microstructural properties, intrinsic thermal permeability and dependent stress parameters inhibits enthusiasm for the potential degrees of freedom of the direct metal laser melting process (DMLS). Especially in quality assurance, post-processing destructive measuring methods are still predominantly necessary in order to evaluate the components adequately. The overall objective of these investigations is to gain process knowledge make reliable in situ statements about component quality and material properties based on the process parameters used and emission values measured. The knowledge will then be used to develop non-destructive tools for the quality management of additively manufactured components. To assess the effectiveness of the research design in relation to the objectives for further investigations, this pre-study evaluates the dependencies between the process parameters, process emission during manufacturing and resulting thermal diffusivity and the relative density of samples fabricated by DMLS. Therefore, the approach deals with additively built metal samples made on an EOS M290 apparatus with varying hatch distances while simultaneously detecting the process emission. Afterwards, the relative density of the samples is determined optically, and thermal diffusivity is measured using the laser flash method. As a result of this pre-study, all interactions of the within factors are presented. The process variable hatch distance indicates a strong influence on the resulting material properties, as an increase in the hatch distance from 0.11 mm to 1 mm leads to a drop in relative density of 57.4 %. The associated thermal diffusivity also reveals a sharp decrease from 5.3 mm2/s to 1.3 mm2/s with growing hatch distances. The variability of the material properties can also be observed in the measured process emissions. However, as various factors overlap in the thermal radiation signal, no clear assignment is possible within the scope of this work.


2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Amirhossein Asfia ◽  
James I. Novak ◽  
Bernard Rolfe ◽  
Tomas Kron

Purpose Radiotherapy relies on the delivery of radiation to cancer cells with millimetre accuracy, and immobilisation of patients is essential to minimise unwanted damage to surrounding healthy cells due to patient movement. Traditional thermoformed face masks can be uncomfortable and stressful for patients and may not be accurately fitted. The purpose of this study was to use 3D scanning and additive manufacturing to digitise this workflow and improve patient comfort and treatment outcomes. Design/methodology/approach The head of a volunteer was scanned using an Artec Leo optical scanner (Artec, Luxembourg) and ANSYS (Ansys, Canonsburg, USA) software was used to make two 3D models of the mask: one with a nose bridge and one open as would be used with optical surface guidance. Data based on measurements from ten pressure sensors around the face was used to perform topology optimisation, with the best designs 3D printed using fused deposition modelling (FDM) and tested on the volunteer with embedded pressure sensors. Findings The two facemasks proved to be significantly different in terms of restricting head movement inside the masks. The optimised mask with a nose bridge effectively restricted head movement in roll and yaw orientations and exhibited minimal deformation as compared to the open mask design and the thermoformed mask. Originality/value The proposed workflow allows customisation of masks for radiotherapy immobilisation using additive manufacturing and topology optimisation based on collected pressure sensor data. In the future, sensors could be embedded in masks to provide real-time feedback to clinicians during treatment.


Author(s):  
Aleksandar Tošic ◽  
Jernej Vičič

To anonymous internet traffic, many popular protocols route traffic through a network of nodes in order to conceal information about the request. However, routing traffic through other nodes inherently introduces added latency. Over the past two decades, there were many attempts to improve the path selection in order to decrease latency with little or no trade-off in terms of security, and anonymity. In this paper, we show the potential use of geo-sharding in decentralized routing networks to improve fault-tolerance, and latency. Such networks can be used as a communication layer for Edge devices computing huge amounts of data. Specifically, we focus our work on Low Latency Anonymous Routing Protocol (LLARP), a protocol built on top of Oxen blockchain that aims to achieve internet privacy. We analyse the existing network of Service Nodes(SN), observe cloud provider centralisation, and propose a high level protocol that provides incentives for a better geographical distribution mitigating potential cloud provider/country wide service dropouts. Additionally, the protocol level information about geographical location can be used to improve client’s path (the string of nodes that will participate in the transaction) selection, decreasing network latency. We show the feasibility of our approach by comparing it with the random path selection in a simulated environment. We observe marginal drops in average latency when selecting paths geographically closer to each other.


Materials ◽  
2021 ◽  
Vol 14 (23) ◽  
pp. 7184
Author(s):  
Nathanael Tan ◽  
Richard van Arkel

Stiff total hip arthroplasty implants can lead to strain shielding, bone loss and complex revision surgery. The aim of this study was to develop topology optimisation techniques for more compliant hip implant design. The Solid Isotropic Material with Penalisation (SIMP) method was adapted, and two hip stems were designed and additive manufactured: (1) a stem based on a stochastic porous structure, and (2) a selectively hollowed approach. Finite element analyses and experimental measurements were conducted to measure stem stiffness and predict the reduction in stress shielding. The selectively hollowed implant increased peri-implanted femur surface strains by up to 25 percentage points compared to a solid implant without compromising predicted strength. Despite the stark differences in design, the experimentally measured stiffness results were near identical for the two optimised stems, with 39% and 40% reductions in the equivalent stiffness for the porous and selectively hollowed implants, respectively, compared to the solid implant. The selectively hollowed implant’s internal structure had a striking resemblance to the trabecular bone structures found in the femur, hinting at intrinsic congruency between nature’s design process and topology optimisation. The developed topology optimisation process enables compliant hip implant design for more natural load transfer, reduced strain shielding and improved implant survivorship.


2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Xin Guan ◽  
Peng Yao ◽  
Reem Alotaibi ◽  
Mohammed Yousuf Abo Keir

Abstract This paper uses the finite element method to explain the specific nature of numerical instability such as network dependence in the topology optimisation of engineering structures from the perspective of partial differential equations. Gaussian function filtering method reduces the global impact of local extremum on topology optimisation. Finally, the method is introduced into the topology optimisation of concrete gravity dams in hydraulic engineering, and the topology optimisation program is developed in conjunction with ANSYS software language to achieve the topology optimisation of building structures in hydraulic engineering from a technical perspective.


Sign in / Sign up

Export Citation Format

Share Document