scholarly journals Evaluation of cloud computing resource scheduling based on improved optimization algorithm

Author(s):  
Huafeng Yu

Abstract Cloud computing, as a new computing mode in recent years, has been pursued by many users who have computational requirements, and the service quality of cloud computing depends largely on the efficiency of resource scheduling. In this study, an improved particle swarm optimization (IPSO) algorithm was proposed to improve the efficiency of resource scheduling, and simulation experiments were carried out on the IPSO algorithm and the traditional particle swarm optimization using CloudSim simulation platform. The phenomenon of premature appeared with the increase of the number of iterations, and the globally optimal solution was not found. The IPSO algorithm was more efficient in exploring the globally optimal solution, and the phenomenon of premature did not appear. As the number of tasks increased, the operation time of both algorithms increased, but the IPSO algorithm increased more slowly. The IPSO algorithm had more advantages when there were a large amount of tasks. Virtual machines in the two algorithms had different loads, and the load of the virtual machine in the IPSO algorithm was more balanced.

2020 ◽  
Vol 10 (1) ◽  
pp. 56-64 ◽  
Author(s):  
Neeti Kashyap ◽  
A. Charan Kumari ◽  
Rita Chhikara

AbstractWeb service compositions are commendable in structuring innovative applications for different Internet-based business solutions. The existing services can be reused by the other applications via the web. Due to the availability of services that can serve similar functionality, suitable Service Composition (SC) is required. There is a set of candidates for each service in SC from which a suitable candidate service is picked based on certain criteria. Quality of service (QoS) is one of the criteria to select the appropriate service. A standout amongst the most important functionality presented by services in the Internet of Things (IoT) based system is the dynamic composability. In this paper, two of the metaheuristic algorithms namely Genetic Algorithm (GA) and Particle Swarm Optimization (PSO) are utilized to tackle QoS based service composition issues. QoS has turned into a critical issue in the management of web services because of the immense number of services that furnish similar functionality yet with various characteristics. Quality of service in service composition comprises of different non-functional factors, for example, service cost, execution time, availability, throughput, and reliability. Choosing appropriate SC for IoT based applications in order to optimize the QoS parameters with the fulfillment of user’s necessities has turned into a critical issue that is addressed in this paper. To obtain results via simulation, the PSO algorithm is used to solve the SC problem in IoT. This is further assessed and contrasted with GA. Experimental results demonstrate that GA can enhance the proficiency of solutions for SC problem in IoT. It can also help in identifying the optimal solution and also shows preferable outcomes over PSO.


2021 ◽  
Vol 11 (12) ◽  
pp. 3054-3061
Author(s):  
S. Sureshu ◽  
R. Vijayabhasker

Real-time physiological data may be gathered using wearable medical sensors based on a network of body sensors. We do not however have an effective, trustworthy and secure body sensor network platform (BSN) that can satisfy growing e-health requirements. Many of these applications require BSN to provide the dependable and energy efficient data transfer of many data speeds. Cloud computing is giving assets to patient dependent on application request at SLA (service level agreement) rules. The service providers are focusing on giving the necessity based asset to satisfy the QoS (quality of service) prerequisites. Therefore, it has become an assessment to adapt service-oriented assets because of vulnerability and active interest for cloud services. The task scheduling is an option in contrast to appropriating asset by evaluating the inconsistent outstanding task at hand. the allocation of tasks given by the microprocessor Subsequently, a productive asset scheduling method needs to disseminate proper VMs (Virtual Machines). The swarm intelligence is appropriate to deal with such vulnerability issues carefully. In this paper, an effective resource scheduling strategy Utilizing Modified Particle Swarm Optimization approach (MPSO) is presented, with a target to limit execution cost that gives an approach for the microprocessor to deal with the multiple number of tasks gives to the controllers in order to perform the multiple tasks that gets logged in the cloud via Internet of things technology (Iot), energy consumed, bandwidth consumption, speed and execution cost. The near investigation of results has been exhibited that the presented scheduling scheme performed better when contrasted with existing evaluation. In this manner, the presented resource scheduling approach might be utilized to enhance the viability of cloud resources.


2021 ◽  
Author(s):  
Amir Javadpour ◽  
Samira Rezaei ◽  
Arun Kumar Sangaiah ◽  
Adam Slowik ◽  
Shadi Mahmoodi Khaniabadi

Abstract VANETs are organized to progress road protection with no specific need for any fixed infrastructure. Subsequently, the movement of all vehicles can be planned in the upcoming future, based on perceived information, Quality of Services Routing (QoSR) algorithms can be pressured on its available options, paths, and links and according to criteria and reliability of the QoSR. Awareness of QoSR to the environmental conditions of the network of vehicles, such as the location of vehicles, direction and speed that can be obtained. This study is to reduce the effects of unpredictable problems on the best pathway to replace the broken path / link. In this article, A QoSR with Particle Swarm Optimization (QoSR-PSO) for improving QoSs in vehicular ad-hoc networks has been used. The particle swarm optimization algorithm by modeling the behavior of a set of particles looks for the optimal solution of the problem. In order to perform simulation experiments, NS2 simulator and VanetMobisim have been used. The comparison results with benchmark studies show the improvement in packet delivery rate (PDR), delay, Packet Drop and overload.


A vibrant on demand service of today’s era is cloud computing where one can utilize computer resources without indirect active management by user where one can use computing resources to achieve coherence in economic scale. Since cloud computing feel like Everything as a service so there should be highly scalable and reliable mechanisms to distribute the load evenly across the VMs evenly. Innumerable cloudlet mapping policies are presented in various research articles to achieve the high performance, better QOS and minimized task execution time but maximum are conventional approaches. No unconventional realistic scheduling algorithms is available which can schedule the tasks in heterogeneous manner. Since cloudlet scheduling is crucial metrics of cloud computing that has to be heightened by combining the different parameters. This paper tried to provide effectiveness and improvement in task scheduling using nature inspired Particle Swarm optimization (PSO) strategy. A powerful nature inspired load balancing mechanism is proposed in this paper which optimized makespan and throughput in environment of varying cloudlets and virtual machines results as compared to other conventional approaches. Proposed (EPSO) algorithm is with four scheduling policies namely FCFS, Round Robin (RR) and Shortest Job First (SJF) and get near twice good throughput percentage and minimized makespan in two different environments. Author used Cloud sim toolkit and some Open Source cloud packages to simulate the results of various scheduling components. Experimental results of various components are tested and simulated on java based CloudSim toolkit framework.


Author(s):  
Jia Jia ◽  
Dejun Mu

In order to reduce the energy cost in cloud computing, this paper represents a novel energy-orientated resource scheduling method based on particle swarm optimization. The energy cost model in cloud computing environment is studied first. The optimization of energy cost is then considered as a multiobjective optimization problem, which generates the Pareto optimization set. To solve this multiobjective optimization problem, the particle swarm optimization is involved. The states of one particle consist of both the allocation plan for servers and the frequency plans on servers. Each particle in this algorithm obtains its Pareto local optimization. After the assembly of local optimizations, the algorithm generates the Pareto global optimization for one server plan. The final solution to our problem is the optimal one among all server plans. Experimental results show the good performance of the proposed method. Comparing with the widely-used Round robin scheduling method, the proposed method requires only 45.5% dynamic energy cost.


2018 ◽  
Vol 17 (04) ◽  
pp. 1237-1267 ◽  
Author(s):  
Mohit Agarwal ◽  
Gur Mauj Saran Srivastava

Task scheduling is one of the most difficult problems which is associated with cloud computing. Due to its nature, as it belongs to nondeterministic polynomial time (NP)-hard class of problem. Various heuristic as well as meta-heuristic approaches have been used to find the optimal solution. Task scheduling basically deals with the allocation of the task to the most efficient machine for optimal utilization of the computing resources and results in better makespan. As per literature, various meta-heuristic algorithms like genetic algorithm (GA), particle swarm optimization (PSO), ant colony optimization (ACO) and their other hybrid techniques have been applied. Through this paper, we are presenting a novel meta-heuristic technique — genetic algorithm enabled particle swarm optimization (PSOGA), a hybrid version of PSO and GA algorithm. PSOGA uses the diversification property of PSO and intensification property of the GA. The proposed algorithm shows its supremacy over other techniques which are taken into consideration by presenting less makespan time in majority of the cases which leads up to 22.2% improvement in performance of the system and also establishes that proposed PSOGA algorithm converges faster than the others.


Sign in / Sign up

Export Citation Format

Share Document