Application of modified cellular automata Markov chain model: forecasting land use pattern in Lebanon

Author(s):  
Walid Al-Shaar ◽  
Jocelyne Adjizian Gérard ◽  
Nabil Nehme ◽  
Hassan Lakiss ◽  
Liliane Buccianti Barakat
2020 ◽  
Vol 12 (24) ◽  
pp. 10452
Author(s):  
Auwalu Faisal Koko ◽  
Wu Yue ◽  
Ghali Abdullahi Abubakar ◽  
Roknisadeh Hamed ◽  
Akram Ahmed Noman Alabsi

Monitoring land use/land cover (LULC) change dynamics plays a crucial role in formulating strategies and policies for the effective planning and sustainable development of rapidly growing cities. Therefore, this study sought to integrate the cellular automata and Markov chain model using remotely sensed data and geographical information system (GIS) techniques to monitor, map, and detect the spatio-temporal LULC change in Zaria city, Nigeria. Multi-temporal satellite images of 1990, 2005, and 2020 were pre-processed, geo-referenced, and mapped using the supervised maximum likelihood classification to examine the city’s historical land cover (1990–2020). Subsequently, an integrated cellular automata (CA)–Markov model was utilized to model, validate, and simulate the future LULC scenario using the land change modeler (LCM) of IDRISI-TerrSet software. The change detection results revealed an expansion in built-up areas and vegetation of 65.88% and 28.95%, respectively, resulting in barren land losing 63.06% over the last three decades. The predicted LULC maps of 2035 and 2050 indicate that these patterns of barren land changing into built-up areas and vegetation will continue over the next 30 years due to urban growth, reforestation, and development of agricultural activities. These results establish past and future LULC trends and provide crucial data useful for planning and sustainable land use management.


Heliyon ◽  
2020 ◽  
Vol 6 (9) ◽  
pp. e05092
Author(s):  
Anne Gharaibeh ◽  
Abdulrazzaq Shaamala ◽  
Rasha Obeidat ◽  
Salman Al-Kofahi

2020 ◽  
Vol 12 (1) ◽  
pp. 626-636
Author(s):  
Wang Song ◽  
Zhao Yunlin ◽  
Xu Zhenggang ◽  
Yang Guiyan ◽  
Huang Tian ◽  
...  

AbstractUnderstanding and modeling of land use change is of great significance to environmental protection and land use planning. The cellular automata-Markov chain (CA-Markov) model is a powerful tool to predict the change of land use, and the prediction accuracy is limited by many factors. To explore the impact of land use and socio-economic factors on the prediction of CA-Markov model on county scale, this paper uses the CA-Markov model to simulate the land use of Anren County in 2016, based on the land use of 1996 and 2006. Then, the correlation between the land use, socio-economic data and the prediction accuracy was analyzed. The results show that Shannon’s evenness index and population density having an important impact on the accuracy of model predictions, negatively correlate with kappa coefficient. The research not only provides a reference for correct use of the model but also helps us to understand the driving mechanism of landscape changes.


2020 ◽  
Author(s):  
shamal

AbstractTHE PROCESS OF SPATIOTEMPORAL CHANGES IN LAND USE LAND COVER (LULC) AND PREDICTING THEIR FUTURE CHANGES ARE HIGHLY IMPORTANT FOR LULC MANAGERS. ONE OF THE MOST IMPORTANT CHALLENGES IN LULC STUDIES IS CONSIDERED TO BE THE CREATION OF SIMULATION OF FUTURE CHANGE IN LULC THAT INVOLVE SPATIAL MODELING. THE PURPOSE OF THIS STUDY IS TO USE GIS AND REMOTE SENSING TO CLASSIFY LULC CLASSES IN DUHOK DISTRICT BETWEEN 1999 AND 2018, AND THEIR RESULTS CALCULATED USING AN INTEGRATED CELLULAR AUTOMATA AND CA-MARKOV CHAIN MODEL TO SIMULATE LULC CHANGES IN 2033. IN THIS STUDY, SATELLITE IMAGES FROM LANDSAT7 ETM AND LANDSAT8 OLI USED FOR DUHOK DISTRICT WHICH IS LOCATED IN THE NORTHERN PART OF IRAQ OBTAINED FROM UNITED STATES GEOLOGICAL SURVEY (USGS) FOR THE PERIODS (1999 AND 2018) ANALYZED USING REMOTE SENSING AND GIS TECHNIQUES IN ADDITION TO THE GROUND CONTROL POINTS, FOR EACH CLASS 60 GROUND POINTS HAVE TAKEN. TO SIMULATE FUTURE LULC CHANGES FOR 2033, INTEGRATED APPROACHES OF CELLULAR AUTOMATA AND CA-MARKOV MODELS UTILIZED IN IDRISI SELVA SOFTWARE. THE OUTCOMES DEMONSTRATE THAT DUHOK DISTRICT HAS EXPERIENCED A TOTAL OF 184.91KM CHANGES DURING THE PERIOD (TABLE 4). THE PREDICTION ALSO INDICATES THAT THE CHANGES WILL EQUAL TO 235.4 KM BY 2033 (TABLE 8). SOIL AND GRASS CONSTITUTES THE MAJORITY OF CHANGES AMONG LULC CLASSES AND ARE INCREASING CONTINUOUSLY. THE ACHIEVED KAPPA VALUES FOR THE MODEL ACCURACY ASSESSMENT HIGHER THAN 0.93 AND 0.85 FOR 1999 AND 2018 RESPECTIVELY SHOWED THE MODEL’S CAPABILITY TO FORECAST FUTURE LULC CHANGES IN DUHOK DISTRICT. THUS, ANALYZING TRENDS OF LULC CHANGES FROM PAST TO NOW AND PREDICT FUTURE APPLYING CA-MARKOV MODEL CAN PLAY AN IMPORTANT ROLE IN LAND USE PLANNING, POLICY MAKING, AND MANAGING RANDOMLY UTILIZED LULC CLASSES IN THE PROPOSED STUDY AREA


Sign in / Sign up

Export Citation Format

Share Document