Ball Convergence for Two Optimal Eighth-Order Methods Using Only the First Derivative

2016 ◽  
Vol 3 (3) ◽  
pp. 2291-2301 ◽  
Author(s):  
Ioannis K. Argyros ◽  
Munish Kansal ◽  
V. Kanwar
Mathematics ◽  
2018 ◽  
Vol 6 (11) ◽  
pp. 260 ◽  
Author(s):  
Janak Sharma ◽  
Ioannis Argyros ◽  
Sunil Kumar

The convergence order of numerous iterative methods is obtained using derivatives of a higher order, although these derivatives are not involved in the methods. Therefore, these methods cannot be used to solve equations with functions that do not have such high-order derivatives, since their convergence is not guaranteed. The convergence in this paper is shown, relying only on the first derivative. That is how we expand the applicability of some popular methods.


2018 ◽  
Vol 13 (02) ◽  
pp. 2050048
Author(s):  
Ioannis K. Argyros ◽  
Munish Kansal ◽  
V. Kanwar

We present a local convergence analysis of an optimal eighth-order family of Ostrowski like methods for approximating a locally unique solution of a nonlinear equation. Earlier studies [T. Lotfi, S. Sharifi, M. Salimi and S. Siegmund, A new class of three-point methods with optimal convergence and its dynamics, Numer. Algorithms 68 (2015) 261–288.] have shown convergence of these methods under hypotheses up to the eighth derivative of the function although only the first derivative appears in the method. In this study, we expand the applicability of these methods using only hypotheses up to the first derivative of the function. By this way the applicability of these methods is extended under weaker hypotheses. Moreover, the radius of convergence and computable error bounds on the distances involved are also given in this study. Numerical examples are also presented in this study.


SeMA Journal ◽  
2016 ◽  
Vol 74 (4) ◽  
pp. 513-521 ◽  
Author(s):  
Ioannis K. Argyros ◽  
Santhosh George ◽  
Shobha M. Erappa

Mathematics ◽  
2019 ◽  
Vol 7 (4) ◽  
pp. 322 ◽  
Author(s):  
Yanlin Tao ◽  
Kalyanasundaram Madhu

The principal objective of this work is to propose a fourth, eighth and sixteenth order scheme for solving a nonlinear equation. In terms of computational cost, per iteration, the fourth order method uses two evaluations of the function and one evaluation of the first derivative; the eighth order method uses three evaluations of the function and one evaluation of the first derivative; and sixteenth order method uses four evaluations of the function and one evaluation of the first derivative. So these all the methods have satisfied the Kung-Traub optimality conjecture. In addition, the theoretical convergence properties of our schemes are fully explored with the help of the main theorem that demonstrates the convergence order. The performance and effectiveness of our optimal iteration functions are compared with the existing competitors on some standard academic problems. The conjugacy maps of the presented method and other existing eighth order methods are discussed, and their basins of attraction are also given to demonstrate their dynamical behavior in the complex plane. We apply the new scheme to find the optimal launch angle in a projectile motion problem and Planck’s radiation law problem as an application.


2017 ◽  
Vol 51 (1) ◽  
pp. 1-14
Author(s):  
Ioannis K. Argyros ◽  
Santhosh George

We present a local convergence analysis for a family of Steffensen-type third-order methods in order to approximate a solution of a nonlinear equation. We use hypothesis up to the first derivative in contrast to earlier studies such as [2, 4, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 17, 16, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28] using hypotheses up to the fourth derivative. This way the applicability of these methods is extended under weaker hypothesis. Moreover the radius of convergence and computable error bounds on the distances involved are also given in this study. Numerical examples are also presented in this study.


Algorithms ◽  
2020 ◽  
Vol 13 (1) ◽  
pp. 25
Author(s):  
Janak Raj Sharma ◽  
Sunil Kumar ◽  
Ioannis K. Argyros

We discuss the local convergence of a derivative-free eighth order method in a Banach space setting. The present study provides the radius of convergence and bounds on errors under the hypothesis based on the first Fréchet-derivative only. The approaches of using Taylor expansions, containing higher order derivatives, do not provide such estimates since the derivatives may be nonexistent or costly to compute. By using only first derivative, the method can be applied to a wider class of functions and hence its applications are expanded. Numerical experiments show that the present results are applicable to the cases wherein previous results cannot be applied.


2012 ◽  
Vol 2012 ◽  
pp. 1-18 ◽  
Author(s):  
Rajni Sharma ◽  
Janak Raj Sharma

We derive a family of eighth-order multipoint methods for the solution of nonlinear equations. In terms of computational cost, the family requires evaluations of only three functions and one first derivative per iteration. This implies that the efficiency index of the present methods is 1.682. Kung and Traub (1974) conjectured that multipoint iteration methods without memory based on n evaluations have optimal order . Thus, the family agrees with Kung-Traub conjecture for the case . Computational results demonstrate that the developed methods are efficient and robust as compared with many well-known methods.


Foundations ◽  
2021 ◽  
Vol 1 (1) ◽  
pp. 23-31
Author(s):  
Samundra Regmi ◽  
Christopher I. Argyros ◽  
Ioannis K. Argyros ◽  
Santhosh George

The goal is to extend the applicability of Newton-Traub-like methods in cases not covered in earlier articles requiring the usage of derivatives up to order seven that do not appear in the methods. The price we pay by using conditions on the first derivative that actually appear in the method is that we show only linear convergence. To find the convergence order is not our intention, however, since this is already known in the case where the spaces coincide with the multidimensional Euclidean space. Note that the order is rediscovered by using ACOC or COC, which require only the first derivative. Moreover, in earlier studies using Taylor series, no computable error distances were available based on generalized Lipschitz conditions. Therefore, we do not know, for example, in advance, how many iterates are needed to achieve a predetermined error tolerance. Furthermore, no uniqueness of the solution results is available in the aforementioned studies, but we also provide such results. Our technique can be used to extend the applicability of other methods in an analogous way, since it is so general. Finally note that local results of this type are important, since they demonstrate the difficulty in choosing initial points. Our approach also extends the applicability of this family of methods from the multi-dimensional Euclidean to the more general Banach space case. Numerical examples complement the theoretical results.


2021 ◽  
Vol 56 (1) ◽  
pp. 72-82
Author(s):  
I.K. Argyros ◽  
D. Sharma ◽  
C.I. Argyros ◽  
S.K. Parhi ◽  
S.K. Sunanda ◽  
...  

In the earlier work, expensive Taylor formula and conditions on derivatives up to the eighthorder have been utilized to establish the convergence of a derivative free class of seventh orderiterative algorithms. Moreover, no error distances or results on uniqueness of the solution weregiven. In this study, extended ball convergence analysis is derived for this class by imposingconditions on the first derivative. Additionally, we offer error distances and convergence radiustogether with the region of uniqueness for the solution. Therefore, we enlarge the practicalutility of these algorithms. Also, convergence regions of a specific member of this class are displayedfor solving complex polynomial equations. At the end, standard numerical applicationsare provided to illustrate the efficacy of our theoretical findings.


Sign in / Sign up

Export Citation Format

Share Document