Foundations
Latest Publications


TOTAL DOCUMENTS

24
(FIVE YEARS 24)

H-INDEX

1
(FIVE YEARS 1)

Published By MDPI AG

2673-9321

Foundations ◽  
2022 ◽  
Vol 2 (1) ◽  
pp. 114-127
Author(s):  
Samundra Regmi ◽  
Christopher I. Argyros ◽  
Ioannis K. Argyros ◽  
Santhosh George

The celebrated Traub’s method involving Banach space-defined operators is extended. The main feature in this study involves the determination of a subset of the original domain that also contains the Traub iterates. In the smaller domain, the Lipschitz constants are smaller too. Hence, a finer analysis is developed without the usage of additional conditions. This methodology applies to other methods. The examples justify the theoretical results.


Foundations ◽  
2022 ◽  
Vol 2 (1) ◽  
pp. 105-113
Author(s):  
Nikolay Kryukov ◽  
Eugene Oks

Previously published analytical results for the effects of a high-frequency laser field on hydrogen Rydberg atoms demonstrated that the unperturbed elliptical orbit of the Rydberg electron, generally is engaged simultaneously in the precession of the orbital plane about the direction of the laser field and in the precession within the orbital plane. These results were obtained while disregarding relativistic effects. In the present paper, we analyze the relativistic effect for hydrogenic Rydberg atoms or ions in a high-frequency linearly- or circularly-polarized laser field, the effect being an additional precession of the electron orbit in its own plane. For the linearly-polarized laser field, the general case, where the electron orbit is not perpendicular to the direction of the laser field, we showed that the precession of the electron orbit within its plane can vanish at some critical polar angle θc of the orbital plane. We calculated analytically the dependence of the critical angle on the angular momentum of the electron and on the parameters of the laser field. Finally, for the particular situation, where the electron orbit is perpendicular to the direction of the laser field, we demonstrated that the relativistic precession and the precession due to the laser field occur in the opposite directions. As a result, the combined effect of these two kinds of the precession is smaller than the absolute value of each of them. We showed that by varying the ratio of the laser field strength F to the square of the laser field frequency ω, one can control the precession frequency of the electron orbit and even make the precession vanish, so that the elliptical orbit of the electron would become stationary. This is a counterintuitive result.


Foundations ◽  
2022 ◽  
Vol 2 (1) ◽  
pp. 85-104
Author(s):  
Tolulope Majekodunmi Joshua ◽  
Nishu Jain ◽  
Raj Kumar ◽  
Khairul Anwar ◽  
Nooraihan Abdullah ◽  
...  

A new α-emitting has been observed experimentally for neutron deficient 214U which opens the window to theoretically investigate the ground state properties of 214,216,218U isotopes and to examine α-particle clustering around the shell closure. The decay half-lives are calculated within the preformed cluster-decay model (PCM). To obtain the α-daughter interaction potential, the RMF densities are folded with the newly developed R3Y and the well-known M3Y NN potentials for comparison. The alpha preformation probability (Pα) is calculated from the analytic formula of Deng and Zhang. The WKB approximation is employed for the calculation of the transmission probability. The individual binding energies (BE) for the participating nuclei are estimated from the relativistic mean-field (RMF) formalism and those from the finite range droplet model (FRDM) as well as WS3 mass tables. In addition to Z=84, the so-called abnormal enhancement region, i.e., 84≤Z≤90 and N<126, is normalised by an appropriately fitted neck-parameter ΔR. On the other hand, the discrepancy sets in due to the shell effect at (and around) the proton magic number Z=82 and 84, and thus a higher scaling factor ranging from 10−5–10−8 is required. Additionally, in contrast with the experimental binding energy data, large deviations of about 5–10 MeV are evident in the RMF formalism despite the use of different parameter sets. An accurate prediction of α-decay half-lives requires a Q-value that is in proximity with the experimental data. In addition, other microscopic frameworks besides RMF could be more reliable for the mass region under study. α-particle clustering is largely influenced by the shell effect.


Foundations ◽  
2021 ◽  
Vol 2 (1) ◽  
pp. 20-84
Author(s):  
Said Mikki

An alternative to conventional spacetime is proposed and rigorously formulated for nonlocal continuum field theories through the deployment of a fiber bundle-based superspace extension method. We develop, in increasing complexity, the concept of nonlocality starting from general considerations, going through spatial dispersion, and ending up with a broad formulation that unveils the link between general topology and nonlocality in generic material media. It is shown that nonlocality naturally leads to a Banach (vector) bundle structure serving as an enlarged space (superspace) inside which physical processes, such as the electromagnetic ones, take place. The added structures, essentially fibered spaces, model the topological microdomains of physics-based nonlocality and provide a fine-grained geometrical picture of field–matter interactions in nonlocal metamaterials. We utilize standard techniques in the theory of smooth manifolds to construct the Banach bundle structure by paying careful attention to the relevant physics. The electromagnetic response tensor is then reformulated as a superspace bundle homomorphism and the various tools needed to proceed from the local topology of microdomains to global domains are developed. For concreteness and simplicity, our presentations of both the fundamental theory and the examples given to illustrate the mathematics all emphasize the case of electromagnetic field theory, but the superspace formalism developed here is quite general and can be easily extended to other types of nonlocal continuum field theories. An application to fundamental theory is given, which consists of utilizing the proposed superspace theory of nonlocal metamaterials in order to explain why nonlocal electromagnetic materials often require additional boundary conditions or extra input from microscopic theory relative to local electromagnetism, where in the latter case such extra input is not needed. Real-life case studies quantitatively illustrating the microdomain structure in nonlocal semiconductors are provided. Moreover, in a series of connected appendices, we outline a new broad view of the emerging field of nonlocal electromagnetism in material domains, which, together with the main superspace formalism introduced in the main text, may be considered a new unified general introduction to the physics and methods of nonlocal metamaterials.


Foundations ◽  
2021 ◽  
Vol 2 (1) ◽  
pp. 6-19
Author(s):  
Neelma ◽  
Eiman ◽  
Kamal Shah

This current work is devoted to develop qualitative theory of existence of solution to some families of fractional order differential equations (FODEs). For this purposes we utilize fixed point theory due to Banach and Schauder. Further using differential transform method (DTM), we also compute analytical or semi-analytical results to the proposed problems. Also by some proper examples we demonstrate the results.


Foundations ◽  
2021 ◽  
Vol 2 (1) ◽  
pp. 1-5
Author(s):  
Eugene Oks

Many totally different kinds of astrophysical observations demonstrated that, in our universe, there exists a preferred direction. Specifically, from observations in a wide range of frequencies, the alignment of various preferred directions in different data sets was found. Moreover, the observed Cosmic Microwave Background (CMB) quadrupole, CMB octopole, radio and optical polarizations from distant sources also indicate the same preferred direction. While this hints at a gravitational pull from the “outside”, the observational data from the Plank satellite showed that the bulk flow velocity was relatively small: much smaller than was initially thought. In the present paper we propose a configuration where two three-dimensional universes (one of which is ours) are embedded in a four-dimensional space and rotate about their barycenter in such a way that the centrifugal force nearly (but not exactly) compensates their mutual gravitational pull. This would explain not only the existence of a preferred direction for each of the three-dimensional universes (the direction to the other universe), but also the fact that the bulk flow velocity, observed in our universe, is relatively small. We point out that this configuration could also explain the perplexing features of the Unidentified Aerial Phenomena (UAP), previously called Unidentified Flying Objects (UFOs), recorded by various detection systems—the features presented in the latest official report by the US Office of the Director of National Intelligence. Thus, the proposed configuration of the two rotating, parallel three-dimensional universes seems to explain both the variety of astrophysical observations and (perhaps) the observed features of the UAP.


Foundations ◽  
2021 ◽  
Vol 1 (2) ◽  
pp. 304-317
Author(s):  
Samar Elaraby ◽  
Sherif M. Abuelenin ◽  
Adel Moussa ◽  
Yasser M. Sabry

Miniaturized Fourier transform infrared spectrometers serve emerging market needs in many applications such as gas analysis. The miniaturization comes at the cost of lower performance than bench-top instrumentation, especially for the spectral resolution. However, higher spectral resolution is needed for better identification of the composition of materials. This article presents a convolutional neural network (CNN) for 3X resolution enhancement of the measured infrared gas spectra using a Fourier transform infrared (FTIR) spectrometer beyond the transform limit. The proposed network extracts a set of high-dimensional features from the input spectra and constructs high-resolution outputs by nonlinear mapping. The network is trained using synthetic transmission spectra of complex gas mixtures and simulated sensor non-idealities such as baseline drifts and non-uniform signal-to-noise ratio. Ten gases that are relevant to the natural and bio gas industry are considered whose mixtures suffer from overlapped features in the mid-infrared spectral range of 2000–4000 cm−1. The network results are presented for both synthetic and experimentally measured spectra using both bench-top and miniaturized MEMS spectrometers, improving the resolution from 60 cm−1 to 20 cm−1 with a mean square error down to 2.4×10−3 in the transmission spectra. The technique supports selective spectral analysis based on miniaturized MEMS spectrometers.


Foundations ◽  
2021 ◽  
Vol 1 (2) ◽  
pp. 286-303
Author(s):  
Vishal Nikam ◽  
Dhananjay Gopal ◽  
Rabha W. Ibrahim

The existence of a parametric fractional integral equation and its numerical solution is a big challenge in the field of applied mathematics. For this purpose, we generalize a special type of fixed-point theorems. The intention of this work is to prove fixed-point theorems for the class of β−G, ψ−G contractible operators of Darbo type and demonstrate the usability of obtaining results for solvability of fractional integral equations satisfying some local conditions in Banach space. In this process, some recent results have been generalized. As an application, we establish a set of conditions for the existence of a class of fractional integrals taking the parametric Riemann–Liouville formula. Moreover, we introduce numerical solutions of the class by using the set of fixed points.


Foundations ◽  
2021 ◽  
Vol 1 (2) ◽  
pp. 271-285
Author(s):  
Giacomo Ortali ◽  
Ioannis G. Tollis

In a dominance drawing Γ of a directed acyclic graph (DAG) G, a vertex v is reachable from a vertex u if, and only if all the coordinates of v are greater than or equal to the coordinates of u in Γ. Dominance drawings of DAGs are very important in many areas of research. They combine the aspect of drawing a DAG on the grid with the fact that the transitive closure of the DAG is apparently obvious by the dominance relation between grid points associated with the vertices. The smallest number d for which a given DAG G has a d-dimensional dominance drawing is called dominance drawing dimension, and it is NP-hard to compute. In this paper, we present efficient algorithms for computing dominance drawings of G with a number of dimensions respecting theoretical bounds. We first describe a simple algorithm that shows how to compute a dominance drawing of G from its compressed transitive closure. Next, we describe a more complicated algorithm, which is based on the concept of modular decomposition of G, and obtaining dominance drawings with a lower number of dimensions. Finally, we consider the concept of weak dominance, a relaxed version of the dominance, and we discuss interesting experimental results.


Foundations ◽  
2021 ◽  
Vol 1 (2) ◽  
pp. 265-270
Author(s):  
Eugene Oks

Measurements of cross-sections of charge exchange between hydrogen atoms and low energy protons (down to the energy ~10 eV) revealed a noticeable discrepancy with previous theories. The experimental cross-sections were systematically slightly higher—beyond the error margins—than the theoretical predictions. In the present paper, we study whether this discrepancy can be eliminated or at least reduced by using the Second Flavor of Hydrogen Atoms (SFHA) in calculations. We show that for the SFHA, the corresponding cross-section is noticeably larger than for the usual hydrogen atoms. We demonstrate that the allowance for the SFHA does bring the theoretical cross-sections in a noticeably better agreement with the corresponding experiments within the experimental error margins. This seems to constitute yet another evidence from atomic experiments that the SFHA is present within the mixture of hydrogen atoms. In combination with the first corresponding piece of evidence from the analysis of atomic experiments (concerning the distribution of the linear momentum in the ground state of hydrogen atoms), as well as with the astrophysical evidence from two different kinds of observations (the anomalous absorption of the redshifted 21 cm radio line from the early universe and the smoother distribution of dark matter than that predicted by the standard cosmology), the results of the present paper reinforce the status of the SFHA as the candidate for dark matter, or at least for a part of it.


Sign in / Sign up

Export Citation Format

Share Document