scholarly journals Surface-Engineered Li4Ti5O12 Nanostructures for High-Power Li-Ion Batteries

2020 ◽  
Vol 12 (1) ◽  
Author(s):  
Binitha Gangaja ◽  
Shantikumar Nair ◽  
Dhamodaran Santhanagopalan

AbstractMaterials with high-power charge–discharge capabilities are of interest to overcome the power limitations of conventional Li-ion batteries. In this study, a unique solvothermal synthesis of Li4Ti5O12 nanoparticles is proposed by using an off-stoichiometric precursor ratio. A Li-deficient off-stoichiometry leads to the coexistence of phase-separated crystalline nanoparticles of Li4Ti5O12 and TiO2 exhibiting reasonable high-rate performances. However, after the solvothermal process, an extended aging of the hydrolyzed solution leads to the formation of a Li4Ti5O12 nanoplate-like structure with a self-assembled disordered surface layer without crystalline TiO2. The Li4Ti5O12 nanoplates with the disordered surface layer deliver ultrahigh-rate performances for both charging and discharging in the range of 50–300C and reversible capacities of 156 and 113 mAh g−1 at these two rates, respectively. Furthermore, the electrode exhibits an ultrahigh-charging-rate capability up to 1200C (60 mAh g−1; discharge limited to 100C). Unlike previously reported high-rate half cells, we demonstrate a high-power Li-ion battery by coupling Li4Ti5O12 with a high-rate LiMn2O4 cathode. The full cell exhibits ultrafast charging/discharging for 140 and 12 s while retaining 97 and 66% of the anode theoretical capacity, respectively. Room- (25 °C), low- (− 10 °C), and high- (55 °C) temperature cycling data show the wide temperature operation range of the cell at a high rate of 100C.

2016 ◽  
Vol 4 (12) ◽  
pp. 4448-4456 ◽  
Author(s):  
David McNulty ◽  
Hugh Geaney ◽  
Eileen Armstrong ◽  
Colm O'Dwyer

Inverse opal porous materials have provided several breakthroughs that have facilitated high rate capability, better capacity retention and material stability in Li-ion batteries.


2017 ◽  
Vol 5 (15) ◽  
pp. 6958-6965 ◽  
Author(s):  
Hyunjung Park ◽  
Dong Hyeok Shin ◽  
Taeseup Song ◽  
Won Il Park ◽  
Ungyu Paik

TiNb2O7 nanotubes with a hierarchical porous structure show ultra-fast rate capability at an extremely high rate of 50C.


2021 ◽  
Vol 9 (11) ◽  
pp. 7018-7024
Author(s):  
Takahiro Yoshinari ◽  
Datong Zhang ◽  
Kentaro Yamamoto ◽  
Yuya Kitaguchi ◽  
Aika Ochi ◽  
...  

A Cu–Au cathode material for all-solid-state fluoride-ion batteries with high rate-capability was designed as new concepts for electrochemical energy storage to handle the physicochemical energy density limit that Li-ion batteries are approaching.


RSC Advances ◽  
2016 ◽  
Vol 6 (29) ◽  
pp. 24320-24330 ◽  
Author(s):  
Junkai He ◽  
Ying Liu ◽  
Yongtao Meng ◽  
Xiangcheng Sun ◽  
Sourav Biswas ◽  
...  

A new one-step microwave method was designed for synthesis of rGO/Co3O4, and the Li-ion battery showed high capacity and long life.


2003 ◽  
Vol 71 (12) ◽  
pp. 1126-1128 ◽  
Author(s):  
Shigeki OHARA ◽  
Junji SUZUKI ◽  
Kyoichi SERINE ◽  
Tsutomu TAKAMURA

RSC Advances ◽  
2018 ◽  
Vol 8 (73) ◽  
pp. 41850-41857 ◽  
Author(s):  
Chunsong Zhao ◽  
Lu-Ning Wang ◽  
Jitao Chen ◽  
Min Gao

Excellent cycling performance for a high rate LiFePO4/C composite with in situ 3D conductive networks.


2015 ◽  
Vol 3 (13) ◽  
pp. 7100-7111 ◽  
Author(s):  
Jia Ding ◽  
Zhi Li ◽  
Huanlei Wang ◽  
Kai Cui ◽  
Alireza Kohandehghan ◽  
...  

An SnO2-carbon nanocomposite was created by a self-assembly method. This showed promising electrochemical performance as both a Na and Li ion battery anode, with among the best cyclability and rate capability when tested against Na.


Sign in / Sign up

Export Citation Format

Share Document