scholarly journals Extracting Possibly Representative COVID-19 Biomarkers from X-ray Images with Deep Learning Approach and Image Data Related to Pulmonary Diseases

2020 ◽  
Vol 40 (3) ◽  
pp. 462-469 ◽  
Author(s):  
Ioannis D. Apostolopoulos ◽  
Sokratis I. Aznaouridis ◽  
Mpesiana A. Tzani
Measurement ◽  
2021 ◽  
pp. 109953
Author(s):  
Adhiyaman Manickam ◽  
Jianmin Jiang ◽  
Yu Zhou ◽  
Abhinav Sagar ◽  
Rajkumar Soundrapandiyan ◽  
...  

Author(s):  
Prateek Sarangi ◽  
Pradosh Priyadarshan ◽  
Swagatika Mishra ◽  
Adyasha Rath ◽  
Ganapati Panda

Author(s):  
Khabir Uddin Ahamed ◽  
Manowarul Islam ◽  
Ashraf Uddin ◽  
Arnisha Akhter ◽  
Bikash Kumar Paul ◽  
...  

Author(s):  
Muntasir Al-Asfoor

Abstract During the times of pandemics, faster diagnosis plays a key role in the response efforts to contain the disease as well as reducing its spread. Computer-aided detection would save time and increase the quality of diagnosis in comparison with manual human diagnosis. Artificial Intelligence (AI) through deep learning is considered as a reliable method to design such systems. In this research paper, an AI based diagnosis approach has been suggested to tackle the COVID-19 pandemic. The proposed system employs a deep learning algorithm on chest x-ray images to detect the infected subjects. An enhanced Convolutional Neural Network (CNN) architecture has been designed with 22 layers which is then trained over a chest x-ray dataset. More after, a classification component has been introduced to classify the x-ray images into two categories (Covid-19 and not Covid-19) of infection. The system has been evaluated through a series of observations and experimentation. The experimental results have shown a promising performance in terms of accuracy. The system has diagnosed Covid-19 with accuracy of 95.7% and normal subjects with accuracy of 93.1 while it showed 96.7 accuracy on Pneumonia.


2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Kai-Chi Chen ◽  
Hong-Ren Yu ◽  
Wei-Shiang Chen ◽  
Wei-Che Lin ◽  
Yi-Chen Lee ◽  
...  

Abstract Acute lower respiratory infection is the leading cause of child death in developing countries. Current strategies to reduce this problem include early detection and appropriate treatment. Better diagnostic and therapeutic strategies are still needed in poor countries. Artificial-intelligence chest X-ray scheme has the potential to become a screening tool for lower respiratory infection in child. Artificial-intelligence chest X-ray schemes for children are rare and limited to a single lung disease. We need a powerful system as a diagnostic tool for most common lung diseases in children. To address this, we present a computer-aided diagnostic scheme for the chest X-ray images of several common pulmonary diseases of children, including bronchiolitis/bronchitis, bronchopneumonia/interstitial pneumonitis, lobar pneumonia, and pneumothorax. The study consists of two main approaches: first, we trained a model based on YOLOv3 architecture for cropping the appropriate location of the lung field automatically. Second, we compared three different methods for multi-classification, included the one-versus-one scheme, the one-versus-all scheme and training a classifier model based on convolutional neural network. Our model demonstrated a good distinguishing ability for these common lung problems in children. Among the three methods, the one-versus-one scheme has the best performance. We could detect whether a chest X-ray image is abnormal with 92.47% accuracy and bronchiolitis/bronchitis, bronchopneumonia, lobar pneumonia, pneumothorax, or normal with 71.94%, 72.19%, 85.42%, 85.71%, and 80.00% accuracy, respectively. In conclusion, we provide a computer-aided diagnostic scheme by deep learning for common pulmonary diseases in children. This scheme is mostly useful as a screening for normal versus most of lower respiratory problems in children. It can also help review the chest X-ray images interpreted by clinicians and may remind possible negligence. This system can be a good diagnostic assistance under limited medical resources.


Sign in / Sign up

Export Citation Format

Share Document