scholarly journals Homotopy types of random cubical complexes

Author(s):  
K. Alex Dowling ◽  
Erik Lundberg
2021 ◽  
Vol 9 ◽  
Author(s):  
Matthew Kahle ◽  
Elliot Paquette ◽  
Érika Roldán

Abstract We study a natural model of a random $2$ -dimensional cubical complex which is a subcomplex of an n-dimensional cube, and where every possible square $2$ -face is included independently with probability p. Our main result exhibits a sharp threshold $p=1/2$ for homology vanishing as $n \to \infty $ . This is a $2$ -dimensional analogue of the Burtin and Erdoős–Spencer theorems characterising the connectivity threshold for random graphs on the $1$ -skeleton of the n-dimensional cube. Our main result can also be seen as a cubical counterpart to the Linial–Meshulam theorem for random $2$ -dimensional simplicial complexes. However, the models exhibit strikingly different behaviours. We show that if $p> 1 - \sqrt {1/2} \approx 0.2929$ , then with high probability the fundamental group is a free group with one generator for every maximal $1$ -dimensional face. As a corollary, homology vanishing and simple connectivity have the same threshold, even in the strong ‘hitting time’ sense. This is in contrast with the simplicial case, where the thresholds are far apart. The proof depends on an iterative algorithm for contracting cycles – we show that with high probability, the algorithm rapidly and dramatically simplifies the fundamental group, converging after only a few steps.


2020 ◽  
pp. 1-43
Author(s):  
Jack S. Calcut ◽  
Craig R. Guilbault ◽  
Patrick V. Haggerty

We give explicit examples of pairs of one-ended, open [Formula: see text]-manifolds whose end-sums yield uncountably many manifolds with distinct proper homotopy types. This answers strongly in the affirmative a conjecture of Siebenmann regarding nonuniqueness of end-sums. In addition to the construction of these examples, we provide a detailed discussion of the tools used to distinguish them; most importantly, the end-cohomology algebra. Key to our Main Theorem is an understanding of this algebra for an end-sum in terms of the algebras of summands together with ray-fundamental classes determined by the rays used to perform the end-sum. Differing ray-fundamental classes allow us to distinguish the various examples, but only through the subtle theory of infinitely generated abelian groups. An appendix is included which contains the necessary background from that area.


2011 ◽  
Vol 47 (2) ◽  
pp. 301-328 ◽  
Author(s):  
Jonathan Ariel Barmak ◽  
Elias Gabriel Minian
Keyword(s):  

1992 ◽  
Vol 06 (11n12) ◽  
pp. 2109-2121
Author(s):  
M. CARFORA ◽  
M. MARTELLINI ◽  
A. MARZUOLI

We provide a non-perturbative geometrical characterization of the partition function of ndimensional quantum gravity based on a rough classification of Riemannian geometries. We show that, under natural geometrical constraints, the theory admits a continuum limit with a non-trivial phase structure parametrized by the homotopy types of the class of manifolds considered. The results obtained qualitatively coincide, when specialized to dimension two, with those of two-dimensional quantum gravity models based on random triangulations of surfaces.


1991 ◽  
Vol 75 (3) ◽  
pp. 195-235 ◽  
Author(s):  
P. Carrasco ◽  
A.M. Cegarra

Sign in / Sign up

Export Citation Format

Share Document