Strain partitioning and relief segmentation in arcuate fold-and-thrust belts: a case study from the western Betics

2017 ◽  
Vol 43 (3) ◽  
pp. 497-518 ◽  
Author(s):  
A. Jiménez-Bonilla ◽  
I. Expósito ◽  
J. C. Balanyá ◽  
M. Díaz-Azpiroz
2020 ◽  
Author(s):  
Alejandro Jiménez-Bonilla ◽  
Ana Crespo ◽  
Inmaculada Expósito ◽  
Juan Carlos Balanyá ◽  
Manuel Díaz-Azpíroz ◽  
...  

<p>Although analogue models have successfully simulated many different types of arcuate fold-and-thrust belts, we were able to design a backstop whose curvature ratio diminished and its protrusion grade increased during experiments reproducing several kinematic features of progressive arcs never seen before 2016. General models were made up of an homogeneous silicone layer, where detachments tend to localize, overlain by a sand layer. They accomplished to simulate the overall structure and kinematics of fold-and-thrust belts of Mediterranean Arcs, especially that of the Gibraltar arc: (1) highly divergent thrust transport directions, (2) arc-perpendicular normal and strike-slip faults accommodating arc-lengthening, (3) transpressive and transtensional bands oblique to the main trend located in the lateral zones, (4) vertical axis-rotations up to 70º and (5) block individualization that rotated independently clockwise and counterclockwise in the left and right arc limbs, respectively.</p><p>However, the ductile layer is neither continuous nor homogeneous in natural cases, such that pinch-outs and diapirs previous to deformation are frequently found across and along strike. Thus, we have modified our original set-up including silicone pinch-outs and different sizes of silicone diapirs. Where silicone pinch-outs were subparallel to the apex movement, differences in the structural style along the foreland thrust-belt occurred. A forward thrust system over frictional detachments (no silicone), or wide, double verging thrust-systems over ductile detachments (with silicone) developed. Differential displacement between both types of thrust-belts was accommodated by transfer zones. Where silicone pinch-outs were perpendicular to the apex movement, the deformation front propagated up to the pinch-out, where it stopped and the thrust-system thickened up to its subsequent collapse. In models with pre-existing diapirs, first thrust and strike-slip faults nucleated close to diapirs and linked them. When deformation proceeded, all diapirs were added and deformed within the fold-and-thrust belts.</p><p>We also made experiments to analyze the ductile deformation and the influence of the brittle layer (sand) thickness. In only silicone models, a homogeneous deformation was observed at the grid scale, where each square was deformed by mostly simple shear in the lateral parts whilst by mostly pure shear in its most frontal part of the models. When a sand layer was sieved on top of the silicone layer, discrete structures developed. Although all models showed strain partitioning between arc-perpendicular shortening and arc-parallel stretching, as the brittle layer thickness increased, fold wavelength increased.</p><p>All these models show the high complexity derived from the different strain partitioning modes and the strain localization along and across-strike fold-and-thrust belts in progressive arcs. They can be extremely helpful to better understand this kind of arcuate orogens that are also the most frequent in nature. Even though these models were previously carried out to simulate the evolution of fold-and-thrust belts of Mediterranean arcs, they can also shed lights for the evolution of many others progressive arcs.</p>


2012 ◽  
Vol 35 (1) ◽  
pp. 235-251 ◽  
Author(s):  
Veerle Vandeginste ◽  
Rudy Swennen ◽  
Melanie Allaeys ◽  
Rob M. Ellam ◽  
Kirk Osadetz ◽  
...  

Author(s):  
Mateusz Kufrasa ◽  
Piotr Krzywiec

AbstractWe demonstrate how lithological and mechanical stratification of Ediacaran–Carboniferous sedimentary package governs strain partitioning in the Lublin Basin (LB) which was incorporated in the marginal portion of the Variscan fold-and-thrust belt. Based on the geometry of seismic reflectors, the pre-Permian–Mesozoic sedimentary sequence was subdivided into two structural complexes differing in structural style. The lower one reveals forelandward-vergent imbrication, while the upper one comprises fold train, second-order deformations, and multiple local detachments. Lithological composition of the upper structural complex controlled geometry, kinematics, and position of compressional deformations in stratigraphic profile. System of foreland-vergent thrusts which links lower and upper detachment developed due to efficiency of simple shear operating in heterogeneous clastic-carbonate-evaporitic strata of the Lower–Upper Devonian age. Internal homogeneity promoted the formation of conjugate sets of thrusts in Silurian shales and Upper Devonian limestones. Structural seismic interpretation combined with sequential restoration revealed localised thickening of Devonian strata and up to 5% difference in length of Devonian horizons. This mismatch is interpreted as a manifestation of distributed shortening, including layer-parallel shortening (LPS), which operated before or synchronously to the initiation of folding. The amount of distributed strain is comparable with numbers obtained in external parts of other fold-and-thrust belts. The outcomes derived from this study may act as a benchmark for studying variability in a structural style of multilayered sequences which were incorporated in the external portion of other fold-and-thrust belts.


2010 ◽  
Vol 45 (5-6) ◽  
pp. 544-561 ◽  
Author(s):  
Ó. Pueyo Anchuela ◽  
A. Gil Imaz ◽  
A. Pocoví Juan

2015 ◽  
pp. B31341.1 ◽  
Author(s):  
Derya Gürer ◽  
Olivier Galland ◽  
Fernando Corfu ◽  
Héctor A. Leanza ◽  
Caroline Sassier

2019 ◽  
Author(s):  
Elisa Fitz-Diaz ◽  
◽  
Rogelio Hernández-Vergara

Sign in / Sign up

Export Citation Format

Share Document