plumbing systems
Recently Published Documents


TOTAL DOCUMENTS

296
(FIVE YEARS 109)

H-INDEX

30
(FIVE YEARS 4)

2022 ◽  
Author(s):  
Luca D'Auria ◽  
Ivan Koulakov ◽  
Janire Prudencio ◽  
Ivan Cabrera-Perez ◽  
Jesus Ibanez ◽  
...  

Abstract Seismic tomography provides a window into magmatic plumbing systems; however, obtaining sufficient data for ‘real-time’ imaging is challenging. Until now, syn-eruptive tomography has not been successfully demonstrated. For the first time, we obtained high-resolution images of Earth's interior during an ongoing volcanic eruption. We used data from 11,349 earthquakes, most of which during La Palma eruption (19 September-13 December, 2021), to perform travel-time seismic tomography. We present high-precision earthquake relocations and 3D distributions of P and S-wave velocities highlighting the geometry of magma sources. We identified three distinct structures: (1) a shallow localised region (< 3 km) of hydrothermal alteration; (2) spatially extensive, consolidated, oceanic crust extending to ~10 km depth and; (3) a large (> 400 km3) sub-crustal magma-filled rock volume intrusion extending from ~7 to 25 km depth. Our results suggest that this large magma reservoir feeds the La Palma eruption continuously for almost three months. Prior to eruption onset, magma ascended from ~10 km depth to the surface in < 7 days. In the upper 3 km, melt migration is along the western contact between consolidated oceanic crust and altered hydrothermal material. Similar structural weaknesses along the eastern contact could potentially cause new eruptive centres in the future.


2022 ◽  
Vol 10 (1) ◽  
pp. 141
Author(s):  
Alexis L. Mraz ◽  
Mark H. Weir

Legionella pneumophila (L. pneumophila) is a pathogenic bacterium of increasing concern, due to its ability to cause a severe pneumonia, Legionnaires’ Disease (LD), and the challenges in controlling the bacteria within premise plumbing systems. L. pneumophila can thrive within the biofilm of premise plumbing systems, utilizing protozoan hosts for protection from environmental stressors and to increase its growth rate, which increases the bacteria’s infectivity to human host cells. Typical disinfectant techniques have proven to be inadequate in controlling L. pneumophila in the premise plumbing system, exposing users to LD risks. As the bacteria have limited infectivity to human macrophages without replicating within a host protozoan cell, the replication within, and egress from, a protozoan host cell is an integral part of the bacteria’s lifecycle. While there is a great deal of information regarding how L. pneumophila interacts with protozoa, the ability to use this data in a model to attempt to predict a concentration of L. pneumophila in a water system is not known. This systematic review summarizes the information in the literature regarding L. pneumophila’s growth within and egress from the host cell, summarizes the genes which affect these processes, and calculates how oxidative stress can downregulate those genes.


2021 ◽  
Vol 353 (S2) ◽  
pp. 1-53
Author(s):  
Ray Macdonald ◽  
John C. White ◽  
Harvey E. Belkin

Author(s):  
Dienye L. Tolofari ◽  
Tim Bartrand ◽  
Sheldon V. Masters ◽  
Marylia Duarte Batista ◽  
Charles N. Haas ◽  
...  

2021 ◽  
Vol 12 ◽  
Author(s):  
Sangita Dixit ◽  
Mahendra Gaur ◽  
Enketeswara Subudhi ◽  
Rajesh Kumar Sahoo ◽  
Suchanda Dey ◽  
...  

In the present study, we explored four different geothermal spots of the Deulajhari spring cluster at a proximity of 10–20 meters with temperatures of 43 to 65°C to unravel their genesis, bacterial diversity and CAZyme potential. However, minor variations in physicochemical properties; TOC, sodium, chloride, zinc and nitrate were observed, including the pH of the spring openings. Illumina based amplicon sequencing revealed Firmicutes, Proteobacteria and Chloroflexi as the major bacterial phylum with higher abundance in the DJ04 sample. The alpha diversity of all the springs was almost same, whereas beta diversity revealed variations in the degree of uniqueness of OTUs at different temperatures. Statistical analysis established a positive correlation between sulfur content with Heliobacterium, Thermodesulfovibrio, Thermodesulfobacterium and Herpetosipho as well as TOC and HCO3 with Thermoanaerobacter, Desulfovibrio, Candidatus solibacter and Dehalogenimona. The major hydrocarbon family genes and Carbohydrate Active Enzyme pathways were predicted to be highest in DJ04 with elevated concentrations of HCO3 and TOC. Higher homogeneity in geo-physicochemical and microbial features direct the possibility of the common origin of these springs through plumbing systems. However, the minor variations in diversity and functionality were due to variations in temperature in spring openings through the mixing of subsurface water contaminated with carbohydrates from leaf biomass litter. Functional characterization of the thermophilic bacteria of this spring provides essential scope for further industrial applications. The biogeochemical reasons hypothesized for the genesis of unique multiple openings in the cluster are also of interest to conservation scientists for taking measures toward necessary laws and regulations to protect and preserve these springs.


2021 ◽  
Vol 38 (3) ◽  
pp. 210-225
Author(s):  
Giovanni Sosa-Ceballos ◽  
Mario Emmanuel Boijseauneau-López ◽  
Juan Daniel Pérez-Orozco ◽  
Gerardo Cifuentes-Nava ◽  
Xavier Bolós ◽  
...  

The origin of silicic rocks in the Michoacán-Guanajuato volcanic field (MGVF) has been understudied since the volcanic field attracted the attention of researchers. Using geochemical, petrological and structural data from the literature, here we propose a model for the origin of silicic magmas. We found that all volcanic rocks known to date in the MGVF can be divided in 40 % andesite, 33 % basaltic andesite, 15 % basalt, 2 % trachybasalt to trachyandesite, and 10 % dacite-rhyolite. The structural systems that deformed the crust in the MGVF are NNW-SSE-oriented normal faults of the Taxco-San Miguel de Allende fault system, developed during the Oligocene, and the Morelia-Acambay fault system consisting of ENE-SSW to E-W sinistral strike-slip faults developed during the Oligocene-Miocene. In addition to bibliographic data, we present a gravimetric-magnetometric model to investigate the characteristics of the local basement where magmas acquire their final silicic composition, and a seismic tomography model to investigate the deep plumbing system that contribute to form the silicic rocks emplaced on the surface. The only report of assimilation experiments we found in the MGVF literature suggest that plagioclase and pyroxene are more easily digested than quartz by hotter magmas. The digestion of these mineral phases has a direct consequence on the generation of dacites and rhyolites. We propose that regardless of the genesis of andesitic melts, such intermediate magmas arrive to the upper-crust and are forced to evolve within local compression zones where they melt the local granitic basement and form crystal mushes. The compositional variability of silicic rocks in the MGVF is a consequence of the variable mixing between the intermediate magmas and the granitic partial melts.


2021 ◽  
Author(s):  
Gregor Weber ◽  
Tom Sheldrake

Caldera-forming eruptions have the potential to impact global climate and induce drastic socioeconomic change. However, the criteria to identify volcanoes capable of producing large magnitude eruptions in the future are not well constrained. Here we compile and analyse data, revealing that volcanoes which have produced catastrophic caldera-forming eruptions in the past, typically show larger ranges of long-term erupted bulk-rock geochemistry compared to those that have not. This observation suggests that geochemical variability is a measure of a magmatic systems size. Using a 2D thermal model that simulates the growth and evolution of crustal-scale magmatic systems by stochastic injection of dikes and sills, we show that such behaviour is consistent with differences in crustal magma fluxes. Higher injection rates accumulate greater melt volumes in more extensive crustal plumbing systems, leading to more variable distributions of temperatures and thus melt composition. We conclude that compositional variability should be included in the catalogue of criteria to identify volcanic systems with greater probabilities of producing future large eruptions. Importantly, this allows to identify stratovolcanoes with caldera-like geochemical signatures, which have not yet been recognized as systems with greater probabilities of producing large magnitude eruptions.


2021 ◽  
pp. SP518-2021-167
Author(s):  
Rajesh K. Srivastava ◽  
Richard E. Ernst ◽  
Kenneth L. Buchan ◽  
Michiel de Kock

AbstractIdentification of large volume, short duration mafic magmatic events of intraplate affinity in both continental and oceanic settings on the Earth and other planets provides invaluable clues for understanding several vital geological issues of current concern. Of particular importance is understanding the assembly and dispersal of supercontinents through Earth's history, dramatic climate change events including mass extinctions, and processes that have produced a wide range of LIP-related resources such as Ni-Cu-PGE, Au, U, base metals, and petroleum. This current volume presents some of the latest developments and new information on the temporal and spatial distribution of LIPs in both the Precambrian and Phanerozoic, their origin, the plumbing system of mafic dyke swarms, sill provinces, and layered inrusions, and links to mantle plumes/superplumes events, supercontinent reconstructions and associated metallogeny.


Sign in / Sign up

Export Citation Format

Share Document