scholarly journals Impact of mechanical stratification on the structural style of the Lublin Basin, SE Poland: results of seismic interpretation and implications for quantification of deformation within the frontal parts of thin-skinned fold-and-thrust belts

Author(s):  
Mateusz Kufrasa ◽  
Piotr Krzywiec

AbstractWe demonstrate how lithological and mechanical stratification of Ediacaran–Carboniferous sedimentary package governs strain partitioning in the Lublin Basin (LB) which was incorporated in the marginal portion of the Variscan fold-and-thrust belt. Based on the geometry of seismic reflectors, the pre-Permian–Mesozoic sedimentary sequence was subdivided into two structural complexes differing in structural style. The lower one reveals forelandward-vergent imbrication, while the upper one comprises fold train, second-order deformations, and multiple local detachments. Lithological composition of the upper structural complex controlled geometry, kinematics, and position of compressional deformations in stratigraphic profile. System of foreland-vergent thrusts which links lower and upper detachment developed due to efficiency of simple shear operating in heterogeneous clastic-carbonate-evaporitic strata of the Lower–Upper Devonian age. Internal homogeneity promoted the formation of conjugate sets of thrusts in Silurian shales and Upper Devonian limestones. Structural seismic interpretation combined with sequential restoration revealed localised thickening of Devonian strata and up to 5% difference in length of Devonian horizons. This mismatch is interpreted as a manifestation of distributed shortening, including layer-parallel shortening (LPS), which operated before or synchronously to the initiation of folding. The amount of distributed strain is comparable with numbers obtained in external parts of other fold-and-thrust belts. The outcomes derived from this study may act as a benchmark for studying variability in a structural style of multilayered sequences which were incorporated in the external portion of other fold-and-thrust belts.

2018 ◽  
Vol 6 (4) ◽  
pp. SM51-SM61
Author(s):  
Sandro Serra

Seismic data in fold and thrust belts (FTBs), especially in onshore areas, are often difficult to interpret due to poor imaging of complex structures. Outcrops, either in the same area as the seismic or in FTBs with similar stratigraphy, provide direct and essentially unfiltered views of structures that can form in this structural style. In addition, physical and mathematical analog models can provide insights on the development of compressional structures and the parameters that most strongly influence their shape. The task of seismic interpretation in FTBs can be aided substantially by using well-exposed outcrops and analog models of compressional structures as templates.


10.1144/sp490 ◽  
2020 ◽  
Vol 490 (1) ◽  
pp. NP-NP
Author(s):  
J. A. Hammerstein ◽  
R. Di Cuia ◽  
M. A. Cottam ◽  
G. Zamora ◽  
R. W. H. Butler

2020 ◽  
Author(s):  
Alejandro Jiménez-Bonilla ◽  
Ana Crespo ◽  
Inmaculada Expósito ◽  
Juan Carlos Balanyá ◽  
Manuel Díaz-Azpíroz ◽  
...  

<p>Although analogue models have successfully simulated many different types of arcuate fold-and-thrust belts, we were able to design a backstop whose curvature ratio diminished and its protrusion grade increased during experiments reproducing several kinematic features of progressive arcs never seen before 2016. General models were made up of an homogeneous silicone layer, where detachments tend to localize, overlain by a sand layer. They accomplished to simulate the overall structure and kinematics of fold-and-thrust belts of Mediterranean Arcs, especially that of the Gibraltar arc: (1) highly divergent thrust transport directions, (2) arc-perpendicular normal and strike-slip faults accommodating arc-lengthening, (3) transpressive and transtensional bands oblique to the main trend located in the lateral zones, (4) vertical axis-rotations up to 70º and (5) block individualization that rotated independently clockwise and counterclockwise in the left and right arc limbs, respectively.</p><p>However, the ductile layer is neither continuous nor homogeneous in natural cases, such that pinch-outs and diapirs previous to deformation are frequently found across and along strike. Thus, we have modified our original set-up including silicone pinch-outs and different sizes of silicone diapirs. Where silicone pinch-outs were subparallel to the apex movement, differences in the structural style along the foreland thrust-belt occurred. A forward thrust system over frictional detachments (no silicone), or wide, double verging thrust-systems over ductile detachments (with silicone) developed. Differential displacement between both types of thrust-belts was accommodated by transfer zones. Where silicone pinch-outs were perpendicular to the apex movement, the deformation front propagated up to the pinch-out, where it stopped and the thrust-system thickened up to its subsequent collapse. In models with pre-existing diapirs, first thrust and strike-slip faults nucleated close to diapirs and linked them. When deformation proceeded, all diapirs were added and deformed within the fold-and-thrust belts.</p><p>We also made experiments to analyze the ductile deformation and the influence of the brittle layer (sand) thickness. In only silicone models, a homogeneous deformation was observed at the grid scale, where each square was deformed by mostly simple shear in the lateral parts whilst by mostly pure shear in its most frontal part of the models. When a sand layer was sieved on top of the silicone layer, discrete structures developed. Although all models showed strain partitioning between arc-perpendicular shortening and arc-parallel stretching, as the brittle layer thickness increased, fold wavelength increased.</p><p>All these models show the high complexity derived from the different strain partitioning modes and the strain localization along and across-strike fold-and-thrust belts in progressive arcs. They can be extremely helpful to better understand this kind of arcuate orogens that are also the most frequent in nature. Even though these models were previously carried out to simulate the evolution of fold-and-thrust belts of Mediterranean arcs, they can also shed lights for the evolution of many others progressive arcs.</p>


2017 ◽  
Vol 43 (3) ◽  
pp. 497-518 ◽  
Author(s):  
A. Jiménez-Bonilla ◽  
I. Expósito ◽  
J. C. Balanyá ◽  
M. Díaz-Azpiroz

2016 ◽  
Vol 187 (2) ◽  
pp. 83-104 ◽  
Author(s):  
Josselin Berthelon ◽  
William Sassi

Abstract Using the geologist’s interpretation of 6 published balanced cross-sections in the fold and thrust belts of the northwestern Mediterranean, a comparative analysis of the interpreted subsurface structural architecture is used to address the links between the structural style and the mechanics of fold and thrust emplacement. For each cross-section example, the geo-dataset and the methods used by the interpreters are different in quantity and quality. Here we have examined how useful is the content of information of each cross-section to constrain the structural evolution scenario. Each interpretation is examined according to considerations of the mechanics of sedimentary basin deformation and how uncertain is the extrapolation of fault trajectory at depth. It is shown that each case reveals a particular type of structural style: thin-skin or thick skin tectonics, fault-related folding, pre-existing fault pattern. The present structural analysis is used to determine for each cross-section the nature of the mechanical problem to address that will reduce uncertainty on the geologic scenario reconstruction. The proposed mechanical boundary conditions could serve to develop analog or numerical models that aim at testing the mechanical validity of the structural scenario of fold and thrust emplacement.


2021 ◽  
Author(s):  
Ferdinando Musso Piantelli ◽  
David Mair ◽  
Marco Herwegh ◽  
Alfons Berger ◽  
Eva Kurmann ◽  
...  

<p>Inversion of passive margins and their transportation into fold-and-thrust belts is a critical stage of mountain building processes and their structural interpretation is fundamental for understanding collisional orogens. Due to the multitude of parameters that influence their formation (e.g. the interaction between sedimentary cover and basement, the mechanical stratigraphy or the rheology of different rock types) as well as along-strike internal variations, a single cross-sectional view is insufficient in exploring the 3D evolution of a fold-and-thrust belt. Hence, a 3D geological characterization is required to better comprehend such complex systems. Based on a detailed digital map, a 3D structural model of the current tectonic situation and sequential retrodeformation, we elaborate the 3D evolution of a part of the former European passive continental margin. In this setting, we focus on the Doldenhorn Nappe (DN) and the underlying western Aar massif (external Central Alps, Switzerland). The DN is part of the Helvetic nappe system and consists of a large-scale recumbent fold with a thin inverted limb of intensively deformed sediments (Herwegh and Pfiffner 2005). The sedimentary rocks of the DN were deposited in Mesozoic-Cenozoic times in a small-sized basin, which has been inverted during the compression of the Alpine orogeny (Burkhard 1988). Along NNW-SSE striking geological cross-sections, restoration techniques reveal the original asymmetric triangular shape of the DN basin and how the basin has been exhumed from ~ -12 km (Berger et al. 2020) to its present position at 4km elevation above sea level throughout several Alpine deformation stages. Moreover, the model allows to visualize the current structural position of the DN and the massif as well as the geometric and overprinting relationships of the articulated deformation sequence that shaped the investigated area throughout the Alpine evolution. Here we document that: (i) the DN is a strongly non-cylindrical recumbent fold that progressively pinches out toward the NE; (ii) significant along-strike (W-E) stratigraphy thickness variations are reflected in structural variations from a single basal thrust deformation (W) to an in-sequence thrust deformation (E); and (iii) the progressive exhumation of the basement units towards the E and thrusting towards the N. In this context, special emphasis is given to illustrate how three-dimensional geometry of inherited pre-orogenic structures (e.g., Variscan-Permian and rifting related basement cover structures) play a key role in the structural style of fold-and-thrust belts. In summary, today’s structural position of the DN is the result of the inversion of a small basin in an early stage of thrusting, which was followed by sub-vertical buoyancy driven exhumation of the Aar massif and subsequent thrust related shortening. All three stages are deeply coupled with an original non-cylindrical shape of the former European passive continental margin.</p>


2020 ◽  
Author(s):  
Zhidong Gu

<p>The eastern Sichuan Basin, South China, is characterized by approximately parallel thin-skinned fold-and-thrust belts with exposed narrow anticlines and wide synclines. The structural deformation, however, has remained controversial due to the previous poor seismic data. In this study, the new collected pre-stack long-offset 2D- and 3D seismic data have been applied, and a 200-km long cross section perpendicular to the fold-and-thrust belts has been constructed to analyze the structural style and geometric and kinematic evolution. The stratigraphic succession is composed of competent layers separated by three main incompetent layers being multiple detachments, which are the Cambrian evaporites, the Lower Silurian shales, and the Middle-Lower Triassic evaporites, respectively. The basal detachment, the Cambrian evaporites, played a dominant role in the structural deformation, above which the fold-and-thrust belts were generated, and the middle and top detachments accommodated the displacement during the deformation. The main structural styles are detachment folds, fault propagation folds, back thrusts and basement-involved folds. The evolution succession of the fold-and-thrust belts should be kink band, detachment folds, and sequential thrusts of the forelimb and backlimb of the folds. The style of deformation is dependent on the mechanical characters of stratigraphic succession, i.e., the thickness variation of competent and incompetent layers in the stratigraphic units.</p>


2020 ◽  
Vol 490 (1) ◽  
pp. 1-8
Author(s):  
James A. Hammerstein ◽  
Raffaele Di Cuia ◽  
Michael A. Cottam ◽  
Gonzalo Zamora ◽  
Robert W. H. Butler

2020 ◽  
Author(s):  
Antonio M. Casas ◽  
Pablo Calvín ◽  
Pablo Santolaria ◽  
Tania Mochales ◽  
Hmidou El-Ouardi ◽  
...  

<p> Multiple constraints, including poorly known parameters, determine along-strike changes of frontal thrust structures in fold-and-thrust belts. Along the 400 km long, continuous Central Moroccan Atlas belt, structural style shows significant changes, preserving similar figures of shortening. This implies the absence of large-scale vertical-axes rotations, as demonstrated by paleomagnetic studies accomplished during the development of this project. The main factors controlling thrust geometry are:</p><p>- the geometry of Triassic-Jurassic extensional basins subsequently inverted during Cenozoic compression, with especial mention to changes of cover thickness and orientation of structures</p><p>- transfer of displacement between the northern and southern thrust systems</p><p>- transfer of displacement between the basement (Paleozoic) units and the Mesozoic cover through the Upper Triassic detachment. This factor strongly determines the width of the belt in each transect, as it occurs in other basement-and-cover fold-and-thrust belts</p><p>- cover/detachment thickness ratio.</p><p>- localization and partitioning of deformation between different structures in the inner part and the borders of the massif</p><p>- amount of superposition between different cover thrust sheets, including folded thrusts</p><p>- structural style, changing from thin-skinned style to large recumbent folds along strike, probably depending on P-T conditions and cover thickness</p><p>- backthrusts related to low cover thickness/detachment thickness ratio, especially frequent in the northern Atlas thrusts</p><p>- differential shortening between sections related to layer-parallel shortening and folds associated with cleavage development in the central part of the chain</p><p>- influence of previous structures, such as individual diapirs, salt walls or igneous intrusions that modify the pre-compressional geometry of the detachment level, nucleate structures and favor buttressing. This feature can also be a source of errors in the calculation of shortening.</p><p> All these factors result in strong along-strike changes such as branching of thrust surfaces, progression of deformation towards the foreland and differential cleavage development. Influence of structures developed during the basinal/diapiric/igneous stage results in a variability of trends that varies between from less than 10° to more than 30°, what allows in some cases to distinguish between structures controlled by basinal features and newly formed thrusts.</p><p>In spite of the different techniques for cross-sections reconstruction, and in some cases, the different interpretations for the origin of structures, the shortening figures obtained along the chain are remarkably constant, on the range of 35 km, thus implying a 18 to 30% of shortening for most of the transects what attests for the reliability of the results.</p><p>Recognition and quantification of factors controlling the development of structures is the fundamental step to determine the main thrust surfaces, and the secondary backthrusts in a region where basin inversion is one of the main constraints. Structural criteria point to a dominant southward vergence and secondary northwards-directed thrusts. Minor strike-slip components were probably localized in the core of the chain. Present-day 3-D reconstruction of the Atlas is currently being done considering all these inputs as well as those obtained from merging the vast dataset obtained.</p>


Sign in / Sign up

Export Citation Format

Share Document