Performance of back-propagation neural network in chaotic data time series forecasting and evaluation over parametric forecast: a case study for rainfall-runoff modelling over a river basin

Author(s):  
Pradeep Kumar Mishra ◽  
Sanjeev Karmakar
2019 ◽  
Vol 53 (6) ◽  
pp. 27-34
Author(s):  
Tim Chen ◽  
C.Y.J. Chen

AbstractThe reproduction of meteorological waves utilizing physically based hydrodynamic models is very difficult in light of the fact that it requires enormous amounts of information, for example, hydrological and water-driven time arrangement limits, stream geometry, and balance coefficients. Accordingly, an artificial neural network (ANN) strategy utilizing a back-propagation neural network (BPNN) and a radial basis function neural network (RBFNN) is perceived as a viable option for modeling and forecasting the maximum and time variation of meteorological tsunamis in the Mekong Estuary in Vietnam. The parameters, including both the nearby climatic and breeze field factors, for finding the most extreme meteorological waves are first examined, depending on the preparation of the evolved neural systems. The time series for meteorological tsunamis are used for training and testing the models, and data for three cyclones are used for model prediction. This study finds that the proposed advanced ANN time series model is easy to utilize with display and prediction tools for simulating the time variation of meteorological tsunamis.


Sign in / Sign up

Export Citation Format

Share Document