Back propagation neural network (BPNN) as tracing method to trace physionet EMG signals: a case study

2017 ◽  
Vol 5 ◽  
pp. 63-69 ◽  
Author(s):  
Jyh-Woei Lin
2016 ◽  
Vol 2016 ◽  
pp. 1-28 ◽  
Author(s):  
Jiani Heng ◽  
Chen Wang ◽  
Xuejing Zhao ◽  
Jianzhou Wang

Power load forecasting always plays a considerable role in the management of a power system, as accurate forecasting provides a guarantee for the daily operation of the power grid. It has been widely demonstrated in forecasting that hybrid forecasts can improve forecast performance compared with individual forecasts. In this paper, a hybrid forecasting approach, comprising Empirical Mode Decomposition, CSA (Cuckoo Search Algorithm), and WNN (Wavelet Neural Network), is proposed. This approach constructs a more valid forecasting structure and more stable results than traditional ANN (Artificial Neural Network) models such as BPNN (Back Propagation Neural Network), GABPNN (Back Propagation Neural Network Optimized by Genetic Algorithm), and WNN. To evaluate the forecasting performance of the proposed model, a half-hourly power load in New South Wales of Australia is used as a case study in this paper. The experimental results demonstrate that the proposed hybrid model is not only simple but also able to satisfactorily approximate the actual power load and can be an effective tool in planning and dispatch for smart grids.


Ocean Science ◽  
2019 ◽  
Vol 15 (2) ◽  
pp. 349-360 ◽  
Author(s):  
Zhiyuan Wu ◽  
Changbo Jiang ◽  
Mack Conde ◽  
Bin Deng ◽  
Jie Chen

Abstract. Sea surface temperature (SST) is the major factor that affects the ocean–atmosphere interaction, and in turn the accurate prediction of SST is the key to ocean dynamic prediction. In this paper, an SST-predicting method based on empirical mode decomposition (EMD) algorithms and back-propagation neural network (BPNN) is proposed. Two different EMD algorithms have been applied extensively for analyzing time-series SST data and some nonlinear stochastic signals. The ensemble empirical mode decomposition (EEMD) algorithm and complementary ensemble empirical mode decomposition (CEEMD) algorithm are two improved algorithms of EMD, which can effectively handle the mode-mixing problem and decompose the original data into more stationary signals with different frequencies. Each intrinsic mode function (IMF) has been taken as input data to the back-propagation neural network model. The final predicted SST data are obtained by aggregating the predicted data of individual series of IMFs (IMFi). A case study of the monthly mean SST anomaly (SSTA) in the northeastern region of the North Pacific shows that the proposed hybrid CEEMD-BPNN model is much more accurate than the hybrid EEMD-BPNN model, and the prediction accuracy based on a BP neural network is improved by the CEEMD method. Statistical analysis of the case study demonstrates that applying the proposed hybrid CEEMD-BPNN model is effective for the SST prediction. Highlights include the following: Highlights. An SST-predicting method based on the hybrid EMD algorithms and BP neural network method is proposed in this paper. SST prediction results based on the hybrid EEMD-BPNN and CEEMD-BPNN models are compared and discussed. A case study of SST in the North Pacific shows that the proposed hybrid CEEMD-BPNN model can effectively predict the time-series SST.


Author(s):  
Sandeep Samantaray ◽  
Abinash Sahoo

Here, an endeavor has been made to predict the correspondence between rainfall and runoff and modeling are demonstrated using Feed Forward Back Propagation Neural Network (FFBPNN), Back Propagation Neural Network (BPNN), and Cascade Forward Back Propagation Neural Network (CFBPNN), for predicting runoff. Various indicators like mean square error (MSE), Root Mean Square Error (RMSE), and coefficient of determination (R2) for training and testing phase are used to appraise performance of model. BPNN performs paramount among three networks having model architecture 4-5-1 utilizing Log-sig transfer function, having R2 for training and testing is correspondingly 96.43 and 95.98. Similarly for FFBPNN, with Tan-sig function preeminent model architecture is seen to be 4-5-1 which possess MSE training and testing value 0.000483, 0.001025, RMSE training and testing value 0.02316, 0.03085 and R2 for training and testing as 0.9925, 0.9611, respectively. But for FFBPNN the value of R2 in training and testing is 0.8765 0.8976. Outcomes on the whole recommend that assessment of runoff is suitable to BPNN as contrasted to CFBPNN and FFBPNN. This consequence helps to plan, arrange and manage hydraulic structures of watershed.


2022 ◽  
Vol 11 (02) ◽  
pp. 41-44
Author(s):  
Hamed Nazerian ◽  
Adel Shirazy ◽  
Aref Shirazi ◽  
Ardeshir Hezarkhani

Artificial neural network (ANN) is one of the practical methods for prediction in various sciences. In this study, which was carried out on Glass and Crystal Factory in Isfahan, the amount of silica purification used in industry has been investigated according to its analyses. In this discussion, according to the artificial neural network algorithm back propagation neural network (BPNN), the amount of silica (SiO2) was predicted according to rock main oxides in chemical analysis. These studies can be used as a criterion for estimating the purity for use in the factory due to the high accuracy obtained.


Sign in / Sign up

Export Citation Format

Share Document