scholarly journals Carbon-Based Metal-Free Electrocatalysis for Energy Conversion, Energy Storage, and Environmental Protection

2018 ◽  
Vol 1 (1) ◽  
pp. 84-112 ◽  
Author(s):  
Chuangang Hu ◽  
Ying Xiao ◽  
Yuqin Zou ◽  
Liming Dai

Abstract Carbon-based metal-free catalysts possess desirable properties such as high earth abundance, low cost, high electrical conductivity, structural tunability, good selectivity, strong stability in acidic/alkaline conditions, and environmental friendliness. Because of these properties, these catalysts have recently received increasing attention in energy and environmental applications. Subsequently, various carbon-based electrocatalysts have been developed to replace noble metal catalysts for low-cost renewable generation and storage of clean energy and environmental protection through metal-free electrocatalysis. This article provides an up-to-date review of this rapidly developing field by critically assessing recent advances in the mechanistic understanding, structure design, and material/device fabrication of metal-free carbon-based electrocatalysts for clean energy conversion/storage and environmental protection, along with discussions on current challenges and perspectives. Graphical Abstract

2015 ◽  
Vol 1 (1) ◽  
pp. e1400129 ◽  
Author(s):  
Jianglan Shui ◽  
Min Wang ◽  
Feng Du ◽  
Liming Dai

The availability of low-cost, efficient, and durable catalysts for oxygen reduction reaction (ORR) is a prerequisite for commercialization of the fuel cell technology. Along with intensive research efforts of more than half a century in developing nonprecious metal catalysts (NPMCs) to replace the expensive and scarce platinum-based catalysts, a new class of carbon-based, low-cost, metal-free ORR catalysts was demonstrated to show superior ORR performance to commercial platinum catalysts, particularly in alkaline electrolytes. However, their large-scale practical application in more popular acidic polymer electrolyte membrane (PEM) fuel cells remained elusive because they are often found to be less effective in acidic electrolytes, and no attempt has been made for a single PEM cell test. We demonstrated that rationally designed, metal-free, nitrogen-doped carbon nanotubes and their graphene composites exhibited significantly better long-term operational stabilities and comparable gravimetric power densities with respect to the best NPMC in acidic PEM cells. This work represents a major breakthrough in removing the bottlenecks to translate low-cost, metal-free, carbon-based ORR catalysts to commercial reality, and opens avenues for clean energy generation from affordable and durable fuel cells.


2020 ◽  
Vol 3 (1) ◽  
pp. 55
Author(s):  
Ana M.B. Honorato ◽  
Mohd Khalid

Carbon materials are continuing in progress to accomplish the requirements of energy conversion and energy storage technologies because of their plenty in nature, high surface area, outstanding electrical properties, and readily obtained from varieties of chemical and natural sources. Recently, carbon-based electrocatalysts have been developed in the quest to replacement of noble metal based catalysts for low cost energy conversion technologies, such as fuel cell, water splitting, and metal-air batteries. Herein, we will present our short overview on recently developed carbon-based electrocatalysts for energy conversion reactions such as oxygen reduction, oxygen evolution, and hydrogen evolution reactions, along with challenges and perspectives in the emerging field of metal-free electrocatalysts.


2015 ◽  
Vol 1 (7) ◽  
pp. e1500564 ◽  
Author(s):  
Jintao Zhang ◽  
Zhenhai Xia ◽  
Liming Dai

Oxygen reduction reaction (ORR) and oxygen evolution reaction (OER) play curial roles in electrochemical energy conversion and storage, including fuel cells and metal-air batteries. Having rich multidimensional nanoarchitectures [for example, zero-dimensional (0D) fullerenes, 1D carbon nanotubes, 2D graphene, and 3D graphite] with tunable electronic and surface characteristics, various carbon nanomaterials have been demonstrated to act as efficient metal-free electrocatalysts for ORR and OER in fuel cells and batteries. We present a critical review on the recent advances in carbon-based metal-free catalysts for fuel cells and metal-air batteries, and discuss the perspectives and challenges in this rapidly developing field of practical significance.


Electrochem ◽  
2020 ◽  
Vol 1 (4) ◽  
pp. 410-438
Author(s):  
Noureen Siraj ◽  
Samantha Macchi ◽  
Brian Berry ◽  
Tito Viswanathan

Herein, metal-free heteroatom doped carbon-based materials are being reviewed for supercapacitor and energy applications. Most of these low-cost materials considered are also derived from renewable resources. Various forms of carbon that have been employed for supercapacitor applications are described in detail, and advantages as well as disadvantages of each form are presented. Different methodologies that are being used to develop these materials are also discussed. To increase the specific capacitance, carbon-based materials are often doped with different elements. The role of doping elements on the performance of supercapacitors has been critically reviewed. It has been demonstrated that a higher content of doping elements significantly improves the supercapacitor behavior of carbon compounds. In order to attain a high percentage of elemental doping, precursors with variable ratios as well as simple modifications in the syntheses scheme have been employed. Significance of carbon-based materials doped with one and more than one heteroatom have also been presented. In addition to doping elements, other factors which play a key role in enhancing the specific capacitance values such as surface area, morphology, pore size electrolyte, and presence of functional groups on the surface of carbon-based supercapacitor materials have also been summarized.


Author(s):  
Ramón Arcas ◽  
Yuuki Koshino ◽  
Elena Mas-Marzá ◽  
Ryuki Tsuji ◽  
Hideaki Masutani ◽  
...  

Society is demanding clean energy to substitute the greatly pollutant carbon-based fuels. As an alternative, the green hydrogen produced by electrocatalysis constitutes a nice strategy as its products and reactants...


2018 ◽  
Vol 31 (9) ◽  
pp. 1801526 ◽  
Author(s):  
Shenlong Zhao ◽  
Da-Wei Wang ◽  
Rose Amal ◽  
Liming Dai

Nanoscale ◽  
2020 ◽  
Vol 12 (6) ◽  
pp. 3593-3604 ◽  
Author(s):  
Meifang Zheng ◽  
Wancang Cai ◽  
Yuanxing Fang ◽  
Xinchen Wang

Ceramic boron carbon nitrides are utilized as semiconductor for solar energy conversion. The photocatalyst provides a low-cost, robust, metal-free, and ambient method for sustainable photosynthesis.


Sign in / Sign up

Export Citation Format

Share Document