forms of carbon
Recently Published Documents


TOTAL DOCUMENTS

242
(FIVE YEARS 47)

H-INDEX

28
(FIVE YEARS 2)

2021 ◽  
Author(s):  
Tejshree Tiwari ◽  
Ryan Sponseller ◽  
Hjalmar Laudon

Abstract One likely consequence of global climate change is an increased frequency and intensity of droughts at high latitudes. We use a 17-year record from 13 nested boreal streams to examine the direct and lagged effects of summer drought on the quantity and quality of dissolved organic carbon (DOC) inputs from catchment soils. Protracted periods of drought reduced DOC concentrations in all catchments but also led to large pulses of DOC inputs upon rewetting in autumn. Concurrent changes in DOC optical properties and chemical character suggest that seasonal drying and rewetting triggers soil processes that alter the forms of carbon supplied to streams. Contrary to common belief, the clearest drought effects were observed in larger watersheds, whereas responses were most muted in smaller catchments. Collectively, our results reveal an emerging shift in the seasonal distribution of DOC concentrations and character, with potentially far-reaching consequences for northern aquatic ecosystems.


Polymers ◽  
2021 ◽  
Vol 13 (20) ◽  
pp. 3547
Author(s):  
Jun-Ven Lim ◽  
Soo-Tueen Bee ◽  
Lee Tin Sin ◽  
Chantara Thevy Ratnam ◽  
Zuratul Ain Abdul Hamid

Carbon can form different allotropes due to its tetravalency. Different forms of carbon such as carbon nanotubes (CNTs), carbon nanofibers, graphene, fullerenes, and carbon black can be used as nanofillers in order to enhance the properties of polymer nanocomposites. These carbon nanomaterials are of interest in nanocomposites research and other applications due to their excellent properties, such as high Young’s Modulus, tensile strength, electrical conductivity, and specific surface area. However, there are some flaws that can be found in the carbon nanoparticles such as tendency to agglomerate, insoluble in aqueous or organic solvents or being unreactive with the polymer surface. In this study, the aim is to study functionalization in order to rectify some of these shortcomings by attaching different functional groups or particles to the surface of these carbon nanoparticles; this also enables the synthesis of high-performance polymer nanocomposites. The main findings include the effects of functionalization on carbon nanoparticles and the applications of polymer nanocomposites with carbon nanoparticles as nanofillers in the industry. Additionally, the different methods used to produce polymer composites such as in situ polymerization, solution mixing and melt blending are studied, as these methods involve the dispersion of carbon nanofillers within the polymer matrix.


2021 ◽  
Author(s):  
Pia Guadalupe Dominguez ◽  
Totte Niittylä

Abstract Plants constitute 80% of the biomass on earth, and almost two thirds of this biomass is found in wood. Wood formation is a carbon demanding process and relies on carbon transport from photosynthetic tissues. Thus, understanding the transport process is of major interest for understanding terrestrial biomass formation. Here we review the molecules and mechanisms used to transport and allocate carbon in trees. Sucrose is the major form in which carbon is transported, found in the phloem sap of all so far investigated tree species. However, in several tree species sucrose is accompanied by other molecules, notably polyols and the raffinose family of oligosaccharides. We describe the molecules that constitute each of these transport groups, and their distribution across different tree species. Further, we detail the metabolic reactions for their synthesis, the mechanisms by which trees load and unload these compounds in and out of the vascular system, and how they are radially transported in the trunk and finally catabolized during wood formation. We also address a particular carbon recirculation process between phloem and xylem that occurs in trees during the annual cycle of growth and dormancy. A search of possible evolutionary drivers behind the diversity of C carrying molecules in trees reveals no consistent differences in carbon transport mechanisms between angiosperm and gymnosperm trees. Furthermore, the distribution of C forms across species suggests that climate related environmental factors will not either explain the diversity of carbon transport forms. However, the consideration of C transport mechanisms in relation to tree—rhizosphere coevolution deserves further attention. To conclude the review, we identify possible future lines of research in this field.


Nanomaterials ◽  
2021 ◽  
Vol 11 (9) ◽  
pp. 2368
Author(s):  
Nikola Slepičková Slepičková Kasálková ◽  
Petr Slepička ◽  
Václav Švorčík

The versatility of the arrangement of C atoms with the formation of different allotropes and phases has led to the discovery of several new structures with unique properties. Carbon nanomaterials are currently very attractive nanomaterials due to their unique physical, chemical, and biological properties. One of these is the development of superconductivity, for example, in graphite intercalated superconductors, single-walled carbon nanotubes, B-doped diamond, etc. Not only various forms of carbon materials but also carbon-related materials have aroused extraordinary theoretical and experimental interest. Hybrid carbon materials are good candidates for high current densities at low applied electric fields due to their negative electron affinity. The right combination of two different nanostructures, CNF or carbon nanotubes and nanoparticles, has led to some very interesting sensors with applications in electrochemical biosensors, biomolecules, and pharmaceutical compounds. Carbon materials have a number of unique properties. In order to increase their potential application and applicability in different industries and under different conditions, they are often combined with other types of material (most often polymers or metals). The resulting composite materials have significantly improved properties.


2021 ◽  
Vol 13 (18) ◽  
pp. 10079
Author(s):  
Danielle L. Gelardi ◽  
Sanjai J. Parikh

Biochar is most commonly considered for its use as a soil amendment, where it has gained attention for its potential to improve agricultural production and soil health. Twenty years of near exponential growth in investigation has demonstrated that biochar does not consistently deliver these benefits, due to variables in biochar, soil, climate, and cropping systems. While biochar can provide agronomic improvements in marginal soils, it is less likely to do so in temperate climates and fertile soils. Here, biochar and its coproducts may be better utilized for contaminant remediation or the substitution of nonrenewable or mining-intensive materials. The carbon sequestration function of biochar, via conversion of biomass to stable forms of carbon, does not depend on its incorporation into soil. To aid in the sustainable production and use of biochar, we offer two conceptual decision trees, and ask: What do we currently know about biochar? What are the critical gaps in knowledge? How should the scientific community move forward? Thoughtful answers to these questions can push biochar research towards more critical, mechanistic investigations, and guide the public in the smart, efficient use of biochar which extracts maximized benefits for variable uses, and optimizes its potential to enhance agricultural and environmental sustainability.


2021 ◽  
Vol 54 (9) ◽  
pp. 1427-1432
Author(s):  
S. S. Tagiverdiev ◽  
O. S. Bezuglova ◽  
S. N. Gorbov ◽  
P. N. Skripnikov ◽  
D. A. Kozyrev

Author(s):  
Belinda Azzahra Irwan Putri ◽  
Farhan Atha ◽  
Fathiyya Rizka ◽  
Rizki Amalia ◽  
Shafira Husna

Transportation uses a significant amount of energy and burns most of the world energy consumers. As a result, it gives effect to the environment, such as air pollution in the forms of carbon dioxide, carbon monoxide, nitrogen oxide, hydrocarbons or volatile organic compounds, and particulate matter. Those compounds contribute a phenomenon called global warming. Within the transportation sector, road transport is the largest contributor to global warming. To cope with global warming, environmental regulations in developed countries are trying to reduce the individual vehicle's emissions. However, this has been counterbalanced by an increase in the number of vehicles and increased use of each vehicle. Therefore, micro-mobility may alleviate several challenges facing big cities today and offer more sustainable urban transportation. This research utilizes the framework of the UTAUT2 to identify and build a quantitative approach to identify factors related to the purchase intention factors of e-scooter sharing. The 200 respondents' field data were collected in Jakarta Metropolitan Area (Jabodetabek) as a rapid increase in pollution level. The linear regression study revealed that the consumers' purchase intention of e-scooter sharing is shaped by seven main factors: performance expectancy, effort expectancy, social influence, facilitating condition, hedonic motivation, price value, and habit. Those factors can explain 81 percent of the field data. Moreover, a brief recommendation for related stakeholders based on the research result is proposed to increase the adoption of e-scooter sharing. The practical implication resulted from this analysis are suggested policy measures the e-scooter sharing environmentally impact potency and strengthening circular economy as a part of green economy achievement in the communities.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Xiao Wang ◽  
Xuexin Wang ◽  
Peng Geng ◽  
Qian Yang ◽  
Kun Chen ◽  
...  

AbstractIn view of the problems of low straw decomposition rates and reduced soil fertility in southern Liaoning, China, we investigated the effects of no-tillage mode (NT), deep loosening + deep rotary tillage mode (PT), rotary tillage mode (RT) and the addition of decomposing agent (the next is called a decomposer) (NT + S, PT + S, RT + S) on the decomposition proportion of straw, respectively, by using the nylon net bag method in combination with 365-day field plot experiments. The decomposition rules of cellulose, hemicellulose and lignin as well as the dynamics of soil organic carbon (SOC), soil microbial biomass carbon (MBC) and soil dissolved organic carbon (DOC) in straw returned to the field for 15, 35, 55, 75, 95, 145 and 365 days were analyzed. The results showed that in the short term, the decomposition of straw was better in both the rotray tillage and deep loosening + deep rotary modes than in the no-tillage mode, and the addition of decomposer significantly promoted the decomposition of straw and the release of carbon from straw, among them, the RT + S treatment had the highest straw decomposition proportion and carbon release proportion in all sampling periods. After a one year experimental cycle, the RT + S treatment showed the highest proportion of cellulose, hemicellulose and lignin decomposition with 35.49%, 84.23% and 85.50%, respectively, and soil SOC, MBC and DOC contents were also higher than the other treatments with an increase of 2.30 g kg−1, 14.22 mg kg−1 and 25.10 mg kg−1, respectively, compared to the pre-experimental soil. Our results show that in the short term, to accelerate the decomposition rate of returned straw and increase the content of various forms of carbon in soil, rotary tillage can be used to return the straw to the field, while also spraying straw decomposer on its surface. This experiment used a new straw decomposer rich in a variety of microorganisms, combined with the comparison of a variety of straw return modes, and in-depth study of straw decomposition effects of cellulose, hemicellulose and lignin. Thus, a scheme that can effectively improve the decomposition rate of straw and the content of various forms of organic carbon in soil within a short period of time was explored to provide theoretical support for the southern Liaoning.


Antioxidants ◽  
2021 ◽  
Vol 10 (7) ◽  
pp. 1121
Author(s):  
Liubov Skrypnik ◽  
Olga Babich ◽  
Stanislav Sukhikh ◽  
Olga Shishko ◽  
Svetlana Ivanova ◽  
...  

This study reveals that fossil shungite samples exhibit antioxidant activity, can reduce oxidized components, and bind to free radicals. A sample of Sh20 (size fraction—20 μm) (1.30 mg equivalents of ascorbic acid/g of shungite; 3.46 mg equivalents of trolox/g of shungite; 0.99 mg equivalents of quercetin/g of shungite) had the maximal activity according to the amperometric method. The obtained data indicate that shungite has antioxidant properties, but these are approximately 1000 times less pronounced than those of quercetin. A ShT20 sample (size fraction—20 μm + heat treatment) was found to have the highest antioxidant activity against the 2,2-diphenyl-1-picrylhydrazyl radical and cytotoxicity. Further studies, including the optimization of the antioxidant extraction conditions of shungite, and the analysis of the qualitative and quantitative composition of the obtained extracts, are required for a more accurate interpretation of the results. Shungite can be applied as an alternative to activated carbon in water purification, due to its absorption, catalytic, antioxidant, regenerating, and antibacterial properties, as well as its high environmental safety and relatively low cost. It is possible to identify new structural forms of carbon within, and other valuable properties of, shungite substance, which will make it possible to create effective technologies for the practical use of shungite rocks, particularly in the production of fullerenes and other carbon nanoclusters.


Sign in / Sign up

Export Citation Format

Share Document