Experimental and simplified visual study to clarify the role of aggregate–paste interface on the early age shrinkage and creep of high-performance concrete

Author(s):  
Arman Montazerian ◽  
Mahmoud Nili ◽  
Negin Haghighat ◽  
Nikta Loghmani
2009 ◽  
Vol 419-420 ◽  
pp. 1-4 ◽  
Author(s):  
Ying Wei Yun ◽  
Ii Young Jang ◽  
Seong Kyum Kim ◽  
Seung Min Park

High-performance concrete (HPC) as a promising construction material has been widely used in infrastructures and high-rise buildings etc. However, its pretty high autogenous shrinkage (AS) especially in its early age becomes one of the key problems endangering long-time durability of HPC structures. This paper carried out the early age AS research of large scaled HPC column specimens by embedded Fiber Bragg-Grating (FBG) strain sensor. Temperature compensation for FBG strain sensor by thermocouple was also attempted in this paper, and the results were reasonable and acceptable comparing with the result compensated by FBG temperature sensor. Reinforcement influence, size effect and temperature effect on HPC AS were also analyzed respectively in this paper.


2019 ◽  
Vol 271 ◽  
pp. 07008
Author(s):  
William Toledo ◽  
Leticia Davila ◽  
Ahmed Al-Basha ◽  
Craig Newtson ◽  
Brad Weldon

This paper investigates the shrinkage and thermal effects of an ultra-high performance concrete (UHPC) mixture proposed for use as an overlay material for concrete bridge decks. In this study, early-age and longer-term shrinkage tests were performed on the locally produced UHPC. Thermal and shrinkage effects in normal strength concrete slabs overlaid with UHPC were also observed. Early-age shrinkage testing showed that approximately 55% of the strain occurred in the plastic state and may not contribute to bond stresses since the elastic modulus of the UHPC should be small at such early ages. Thickness of the substrate and amount of reinforcing steel were important factors for shrinkage in the slabs. The thickest slab experienced greater shrinkage than thinner slabs. Comparing this slab to a thinner slab with the same reinforcement indicated that reinforcement ratio is more important than the area of steel.


Sign in / Sign up

Export Citation Format

Share Document