First report of Alternaria alternata causing leaf spots of Liriodendron chinense × tulipifera in China

Author(s):  
Guan-Qun Jin ◽  
Guang-Yao Mao ◽  
De-Wei Li ◽  
Yu Wan ◽  
Li-Hua Zhu
Plant Disease ◽  
2013 ◽  
Vol 97 (8) ◽  
pp. 1116-1116 ◽  
Author(s):  
V. Parkunan ◽  
S. Li ◽  
E. G. Fonsah ◽  
P. Ji

Research efforts were initiated in 2003 to identify and introduce banana (Musa spp.) cultivars suitable for production in Georgia (1). Selected cultivars have been evaluated since 2009 in Tifton Banana Garden, Tifton, GA, comprising of cold hardy, short cycle, and ornamental types. In spring and summer of 2012, 7 out of 13 cultivars (African Red, Blue Torres Island, Cacambou, Chinese Cavendish, Novaria, Raja Puri, and Veinte Cohol) showed tiny, oval (0.5 to 1.0 mm long and 0.3 to 0.9 mm wide), light to dark brown spots on the adaxial surface of the leaves. Spots were more concentrated along the midrib than the rest of the leaf and occurred on all except the newly emerged leaves. Leaf spots did not expand much in size, but the numbers approximately doubled during the season. Disease incidences on the seven cultivars ranged from 10 to 63% (10% on Blue Torres Island and 63% on Novaria), with an average of 35% when a total of 52 plants were evaluated. Six cultivars including Belle, Ice Cream, Dwarf Namwah, Kandarian, Praying Hands, and Saba did not show any spots. Tissue from infected leaves of the seven cultivars were surface sterilized with 0.5% NaOCl, plated onto potato dextrose agar (PDA) media and incubated at 25°C in the dark for 5 days. The plates were then incubated at room temperature (23 ± 2°C) under a 12-hour photoperiod for 3 days. Grayish black colonies developed from all the samples, which were further identified as Alternaria spp. based on the dark, brown, obclavate to obpyriform catenulate conidia with longitudinal and transverse septa tapering to a prominent beak attached in chains on a simple and short conidiophore (2). Conidia were 23 to 73 μm long and 15 to 35 μm wide, with a beak length of 5 to 10 μm, and had 3 to 6 transverse and 0 to 5 longitudinal septa. Single spore cultures of four isolates from four different cultivars were obtained and genomic DNA was extracted and the internal transcribed spacer (ITS1-5.8S-ITS2) regions of rDNA (562 bp) were amplified and sequenced with primers ITS1 and ITS4. MegaBLAST analysis of the four sequences showed that they were 100% identical to two Alternaria alternata isolates (GQ916545 and GQ169766). ITS sequence of a representative isolate VCT1FT1 from cv. Veinte Cohol was submitted to GenBank (JX985742). Pathogenicity assay was conducted using 1-month-old banana plants (cv. Veinte Cohol) grown in pots under greenhouse conditions (25 to 27°C). Three plants were spray inoculated with the isolate VCT1FT1 (100 ml suspension per plant containing 105 spores per ml) and incubated under 100% humidity for 2 days and then kept in the greenhouse. Three plants sprayed with water were used as a control. Leaf spots identical to those observed in the field were developed in a week on the inoculated plants but not on the non-inoculated control. The fungus was reisolated from the inoculated plants and the identity was confirmed by morphological characteristics and ITS sequencing. To our knowledge, this is the first report of Alternaria leaf spot caused by A. alternata on banana in the United States. Occurrence of the disease on some banana cultivars in Georgia provides useful information to potential producers, and the cultivars that were observed to be resistant to the disease may be more suitable for production. References: (1) E. G. Fonsah et al. J. Food Distrib. Res. 37:2, 2006. (2) E. G. Simmons. Alternaria: An identification manual. CBS Fungal Biodiversity Center, Utrecht, Netherlands, 2007.


Plant Disease ◽  
1999 ◽  
Vol 83 (5) ◽  
pp. 487-487 ◽  
Author(s):  
L. Corazza ◽  
L. Luongo ◽  
M. Parisi

A leaf spot of kiwifruit (Actinidia deliciosa (A. Chev.) C. F. Liang & A. R. Ferg.) leaves was recently observed on plants of the cultivar Hayward in an orchard near Salerno, in southern Italy. The affected plants showed early severe defoliation. The fungus isolated from the infected leaves was identified as Alternaria alternata (Fr.:Fr.) Keissl., based on conidial morphological characteristics. Pathogenicity tests were made by inoculating detached leaves of male pollinator cultivar Tomuri and the female cultivars Hayward and Bruno with a 7-mm disk taken from actively growing cultures of the fungus on potato dextrose agar (PDA). After 14 days, necrotic leaf spots developed and A. alternata was consistently isolated from the inoculated leaves. A. alternata has been observed as a pathogen on leaves and fruits in New Zealand. In the Mediterranean, it has been reported in Israel (2) and in the island of Crete (1). This is the first report of Alternaria leaf spot on kiwifruit in Italy. References: (1) V. A. Bourbos and M. T. Skoudridakis. Petria 7:111, 1997. (2) A. Sive and D. Resnizky. Alon Hanotea 41:409, 1987.


Plant Disease ◽  
2020 ◽  
Vol 104 (11) ◽  
pp. 3061
Author(s):  
A. Garibaldi ◽  
D. Bertetti ◽  
S. Matić ◽  
I. Luongo ◽  
M. L. Gullino

2020 ◽  
Vol 102 (3) ◽  
pp. 953-953
Author(s):  
Angelo Garibaldi ◽  
Giulia Tabone ◽  
Slavica Matić ◽  
Incoronata Luongo ◽  
Maria Lodovica Gullino

Plant Disease ◽  
2014 ◽  
Vol 98 (8) ◽  
pp. 1153-1153 ◽  
Author(s):  
Y. Li ◽  
J. Shen ◽  
B. H. Pan ◽  
M. X. Guo ◽  
Q. X. Wang ◽  
...  

Marigold (Tagetes erecta) is an important commercial crop and 200 ha are planted every year in the Beijing district of China. A leaf spot disease of T. erecta was observed during 2012 and 2013 in the Beijing district. The disease was widespread, with 60 to 75% of the fields affected. Leaves of the affected plants had small, brown, necrotic spots on most of the foliage. Yield losses of flowers of up to 20 to 30% were reported. The spots gradually enlarged, becoming irregular in shape, or remained circular, and with concentric rings or zones. In the later stages of infection, the spots coalesced, and the leaves withered, dried, and fell from the plants (4). A fungus was consistently isolated on potato dextrose agar (PDA) from the infected leaves of T. erecta. After 6 days of incubation at 26°C and a 12-h photoperiod, the fungus produced colonies that were flat, with a rough upper surface (2). The conidiophores were short. Conidia varied from 18 × 6 to 47 × 15 μm and were medium to dark brown or olive-brown in color, short beaked, borne in long chains, oval and bean shaped, with 1 to 5 transverse septa and 0 to 2 longitudinal septa. The rDNA of the internal transcribed spacer regions 1 and 2 and the 5.8S gene in seven isolates were amplified using primers ITS1 (5′-TCCGTAGGTGAACCTGCGG-3′) and ITS4 (5′-TCCTCCGCTTATTGATATGC-3′). The nucleotide sequence was the same as isolate No. 7, which was deposited in GenBank (Accession No. KF307207). A BLAST search showed 97% identity with the strain Alternaria alternata GNU-F10 (KC752593). Seven isolates were also confirmed as A. alternata by PCR identification performed by specific primers (C_for/C_rev) of A. alternata (1). Seven isolates were grown on PDA for 2 weeks and the conidia harvested. A 5-μl drop of spore suspension (1 × 105 spores/ml) was placed on each leaflet of 140 detached, surface-sterilized T. erecta leaves. Twenty leaves were inoculated with sterile distilled water as a control. The leaves were incubated in a growth chamber at 80 to 90% relative humidity, 50 to 60 klx/m2 light intensity, and a 12-h photoperiod. After 6 days, leaf spots similar to the original developed at inoculation sites for all isolates and A. alternata was consistently re-isolated. The control leaves remained symptomless. The pathogenicity test was performed three times. Leaf spot of T. erecta caused by Alternaria spp. is well known in Asian countries such as Japan (3). To our knowledge, this is the first report of A. alternata on T. erecta in the Beijing district of China. References: (1) T. Gat. Plant Dis. 96:1513, 2012. (2) E. Mirkova. J. Phytopathol. 151:323, 2003. (3) K. Tomioka. J. Gen. Plant Pathol. 66:294, 2000. (4) T. Y. Zhang. Page 284 in: Flora Fungorum Sinicorum, Volume 16: Alternaria. Science Press, Beijing, 2003.


Plant Disease ◽  
2014 ◽  
Vol 98 (5) ◽  
pp. 697-697 ◽  
Author(s):  
L. X. Zhou ◽  
W. X. Xu

Tea is the most popular non-alcoholic beverage crop in the world, which originated in China and has been cultivated in over 45 countries. In recent years, a leaf spot disease of unknown etiology has been observed on young leaves of tea trees (Camellia sinensis) grown in Luotian county, Hubei Province, China. Observed symptoms display grayish brown to white spots (about 1 cm in diameter) surrounded by brown edges. Over 20% of the young leaves were affected on surveyed trees. To identify the pathogen, six symptomatic tea leaves were collected from six individual tea trees of unknown variety in August 2012. A thin section (3 to 5 mm) of symptomatic tissue was sterilized in a bleach solution of 3% hypochlorite and placed on potato dextrose agar (PDA) medium at 25°C in darkness for isolation. Six fungal colonies displaying gray-brown and gray-white aerial mycelia were consistently recovered from lesions of the six leaves, termed as T1 to T6, respectively. Conidia produced on the colonies were olive brown, obpyriform, short conical beak at the tip, 0 to 3 vertical and 1 to 6 transverse septa, and length × width of 7.1 to 31.7 (avg. 20.1) × 2.9 to 12.7 (avg. 7.2) μm. T1 to T6 were identified as Alternaria alternata on the basis of morphological characterization, respectively (2). Confirmation of the species identification was obtained by molecular characterization of their internal transcribed spacer (ITS) and glyceraldehyde-3-phosphate dehydrogenase (GAPDH) regions amplified from the genomic DNAs using the universal primers (1). The results revealed identical sequences of ITS (GenBank Accession No. KF699530) and GAPDH among the six isolates. BLAST searches showed that they had the highest similarity with A. alternata strains, with 98.3% for ITS (AJ276055) and 96.2% for GAPDH (EF513205), deposited in fungus database ( http://www.mycobank.org/ ). Pathogenicity tests were conducted on the detached leaves expanding for 10 to 20 days of two tea varieties (cvs. Fudingdabai and Taicha No. 12) in triplicate by placing 4 mm diameter discs from 5-day-old PDA plates of T3 and T6, which were incubated in an incubator at 25°C with a 12-h photoperiod for 7 days. All inoculated leaves with or without wound treatment developed brown spots similar to the original ones at 7 days post inoculation (dpi) while the control leaves inoculated with non-colonized PDA plugs remained asymptomatic. Isolates recovered from diseased samples were of the same morphology and ITS sequence as the inoculated ones. Alternaria alternata had been described on C. sinensis in China (3), but it was only reported as a severe foliar fungal pathogen of tea in North Bengal, India (1), and to our knowledge, this is the first report of A. alternata causing leaf spots on tea leaves (C. sinensis) in China. In addition to quantity loss, the species may result in a decrease of quality of tea crop considering that it can produce Alternaria toxins related to animal and public health. The etiologic identification of the disease is expected to provide useful information for its control. References: (1) B. N. Chakraborty et al. Plant Pathol. 55:303, 2006. (2) E. G. Simmons. Page 1 in: Alternaria Biology, Plant Diseases and Metabolites. J. Chelchowski and A. Visconti, eds. Elsevier, Amsterdam, 1992. (3) F. L. Tai. Page 1527 in: Sylloge Fungorum Sinicorum. eds. Sci. Press Acad. Sin. Beijing, 1979. (4) B. S. Weir et al. Stud. Mycol. 73:115, 2012.


Plant Disease ◽  
2019 ◽  
Vol 103 (6) ◽  
pp. 1426-1426
Author(s):  
J. P. Wu ◽  
J. Zhou ◽  
Z. B. Jiao ◽  
L. F. Chen ◽  
Z. X. Liu ◽  
...  

Plant Disease ◽  
2021 ◽  
Author(s):  
Hafiz Arslan Anwaar ◽  
Rashida Atiq ◽  
Sobia Chohan ◽  
Amjad Saeed ◽  
Muqaddas Tanveer Cheema ◽  
...  

Fig (Ficus carica) is a species of flowering plants within the mulberry family. During June 2020, leaf spots were observed on several fig plants (31°26'15.0"N 73°04'25.6"E) at the University of Agriculture, Faisalabad, Pakistan. Early symptoms were small, oval to circular, light brown, sunken spots that were uniformly distributed on the leaves. Spots gradually enlarged and coalesced into circular to irregular dark brown to black spots that could be up to 3cm diam. with no or small sized fruit. Disease incidence was approximately 25%. To identify the causal agent of the disease, 15 symptomatic leaves were collected. Small pieces from all diseased samples were removed from the margin between healthy and diseased tissues were surface disinfested in 70% ethanol for 2 min, rinsed three times with sterile distilled water, plated on Potato dextrose agar and incubated at 25 ± 2°C with a 12-h photoperiod. Fungal isolation on PDA medium frequency was 95% from diseases leaves. Morphological observations were made on 7- day- old single-spore cultures. The colonies initially appeared light grayish which turned sooty black in color. All fungal isolates were characterized by small, short-beaked, multicellular conidia. The conidia were ellipsoidal or ovoid and measured 9 to 25 μm × 5 to 10 μm (n = 40) with longitudinal and transverse septa. The morphological characters matched those of Alternaria alternata (Simmons et al. 2007). Genomic DNA of a representative isolate (FG01-FG03) was extracted using DNAzol reagent (Thermo Fisher Scientific MA, USA) and PCR amplification of the internal transcribed spacer (ITS) rDNA region, was performed with primers ITS1/ITS4 (White et al. 1990), partial RNA polymerase II largest subunit (RPB2) with RPB2-5F/RPB2-7cR (Liu et al. 1999) and glyceraldehyde 3-phosphate dehydrogenase (GAPDH) gene regions was performed with gpd1/gpd2 (Berbee et al. 1999). The obtained sequences were deposited in GenBank with accession numbers MW692903.1 to MW692905.1 for ITS-rDNA gene, MZ066731.1 to MZ066733.1 for RPB2 and MZ066728.1 to MZ066730.1 for GAPDH. BLASTn analysis showed 100% identity with the submitted sequences of A. alternata for ITS rDNA, RPB2, and GAPDH. To confirm pathogenicity, 2-month-old 15 healthy potted F. carica plants were sprayed at true leaf stage with conidial suspension by using an atomizer in a greenhouse. Each representative A. alternata isolate (FG01-FG03) was inoculated on every three plants with conidial suspensions (106 conidia/ml; obtained from 1-week-old cultures) amended with 0.1% (vol/vol) of Tween 20 until runoff (1.5 to 2 ml per plant) whereas, three control plants were sprayed with sterile distilled water amended with 0.1% Tween 20. All plants were incubated at 25 ± 2°C in a greenhouse, and the experiment was conducted twice. After 10 days of inoculation, each isolate induced leaf spots similar to typical spots observed in the field, whereas the control plants remained symptomless. The fungus was re-isolated from symptomatic tissues and reisolation frequency was 100%. Re-isolated fungal cultures were again morphologically and molecularly identical to A. alternata, thus fulfilling Koch’s postulates. Previously, A. alternata has been reported cause fruit disease of fig in Pakistan and California, USA (Alam et al. 2021; Latinović et al. 2014). To our knowledge, this is the first report of A. alternata causing leaf spot on common fig in Pakistan. In Pakistan, fig is widely grown for drying, and this disease may represent a threat to fig cultivation.


Plant Disease ◽  
2000 ◽  
Vol 84 (1) ◽  
pp. 103-103 ◽  
Author(s):  
I. A. Laidou ◽  
E. K. Koulakiotu ◽  
C. C. Thanassoulopoulos

A stem blight of cotton (Gossypium hirsutum L.) was observed on plants of cv. 132 in the district of Ammoudia near Serres in northern Greece. Symptoms of the disease include cankers on the stem, leaf spots, and boll rots. Affected plants show early defoliation and maturing, as well as total or partial necrosis. Symptoms on stems include dark brown, circular spots that enlarge rapidly. The center of the lesions sink to form a canker. Gradually the spots become elliptical, and the tissues split the stem longitudinally, resulting in the total or partial death of the plant. The fungus isolated from infected stem tissues was identified as typical Alternaria alternata (Nees:Fr.) Keissler, based on morphological characteristics of conidia, which are produced in a loose three-dimensional tuft of branching chains (2). Pathogenicity tests were conducted by inoculating 50 cotton stems with 5-mm disks from 9-day-old cultures on potato dextrose agar at 25°C. Each stem was inoculated with three disks, and plants were placed at room temperature for 10 days for disease development. Inoculated plants exhibited more than 95% disease incidence, and frequency of reisolation was more than 70%. A. alternata is commonly known as a leaf spot, boll rot, and seedling blight pathogen of cotton. The only reported stem blight pathogen of cotton is A. macrospora (1). This is the first report of typical A. alternata as the cause of stem blight on cotton. References: (1) L. Ling and F. Y. Yang. Phytopathology 31:664, 1941. (2) E. G. Simmons. Mycotaxon 48:109, 1993.


Plant Disease ◽  
2011 ◽  
Vol 95 (11) ◽  
pp. 1476-1476 ◽  
Author(s):  
N. Ravi Sankar ◽  
A. Sreeramulu ◽  
D. Sai Gopal ◽  
G. Bagyanarayana

Basella alba is a perennial plant of the Basellaceae, native to India, and is distributed widely in the tropics as an ornamental. It is also known as Indian spinach, Ceylon spinach, vine spinach, Malabar spinach or Malabar nightshade and is mostly cultivated as a leafy vegetable or spinach substitute, being rich in vitamin A and C. From 2008 to 2010, severe foliar disease was observed on B. alba in the region of Southern Andhra Pradesh, India. Approximately 75 to 85% of the fields were affected with disease incidence ranging from 70 to 90%. Leaf lesions were elliptical to irregular oval, yellow brown to dark brown, and sometimes concentrically zonate with diffuse margins frequently surrounded by light-colored haloes. Infection often started at the leaf tips and progressed to the base of leaves as symptoms developed. In severe infections, lesions enlarged and coalesced, causing necrosis, wilting, and ultimately death of leaves. Tissues from the margin of infected leaf parts were surface sterilized in 1% sodium hypochlorite for 1 min, plated on potato dextrose agar (PDA), and then incubated at 27°C in the dark for 7 days. Hyphal tips from the margin of each developing colony were subcultured on PDA. Fungal colonies were initially white, becoming olivaceous, and turning brown with age. Conidiophores were brown, short, simple, or sometimes branched. Conidia were obclavate, obpyriform or ellipsoidal with a short conical beak, borne in long chains, branched or unbranched, pale brown to brown, and 18 to 32 μm long and 5 to 14 μm wide at the broadest point. Conidia had three to eight transverse septa and one to two longitudinal septa. On the basis of conidial morphological characteristics, the pathogen was identified as Alternaria alternata (Fr.) Keissler (2). For pathogenicity tests, inoculations were performed on detached, surface sterilized, healthy leaves following the method of Belisario (1). A 5-μl drop of conidial suspension containing 1 × 105 CFU/ml was placed on each leaf and 12 leaves per isolate were used. Leaves were incubated in a growth chamber (90% relative humidity with a 12-h photoperiod). After 7 days, leaf spots that were similar to the original symptoms developed on all inoculated leaves and A. alternata was consistently reisolated from symptomatic leaf tissues on PDA. Control leaves inoculated with sterile distilled water remained asymptomatic. The experiment was performed three times. To our knowledge, this is the first report of A. alternata on B. alba in India. References: (1) A. Belisario et al. Plant Dis. 83:696, 1999. (2) E. G. Simmons. Alternaria: An Identification Manual. The American Phytopathological Society, St. Paul, MN, 2007.


Sign in / Sign up

Export Citation Format

Share Document