First report of leaf spot on sorghum caused by Pestalotiopsis trachycarpicola in China

Author(s):  
Juan Fan ◽  
Hong Bo Qiu ◽  
Hai Jiang Long ◽  
Wei Zhao ◽  
Xiao Long Xiang ◽  
...  
Keyword(s):  
2017 ◽  
Vol 23 (2) ◽  
Author(s):  
S. A. FIRDOUSI

During the survey of the forest fungal disease, of Jalgaon district, two severe leaf spot diseases on Lannae coromandelica and ( Ougenia dalbergioides (Papilionaceae) were observed in Jalgaon, forest during July to September 2016-17. The casual organism was identified as Stigmina lanneae and Phomopsis sp. respectively1-4,7. These are first report from Jalgaon and Maharashtra state.


Author(s):  
Yiping Cui ◽  
Aitian Peng ◽  
Xiaobing Song ◽  
Baoping Cheng ◽  
Jinfeng Ling ◽  
...  

Plant Disease ◽  
2013 ◽  
Vol 97 (12) ◽  
pp. 1654-1654 ◽  
Author(s):  
A. L. Vu ◽  
M. M. Dee ◽  
J. Zale ◽  
K. D. Gwinn ◽  
B. H. Ownley

Knowledge of pathogens in switchgrass, a potential biofuels crop, is limited. In December 2007, dark brown to black irregularly shaped foliar spots were observed on ‘Alamo’ switchgrass (Panicum virgatum L.) on the campus of the University of Tennessee. Symptomatic leaf samples were surface-sterilized (95% ethanol, 1 min; 20% commercial bleach, 3 min; 95% ethanol, 1 min), rinsed in sterile water, air-dried, and plated on 2% water agar amended with 3.45 mg fenpropathrin/liter (Danitol 2.4 EC, Valent Chemical, Walnut Creek, CA) and 10 mg/liter rifampicin (Sigma-Aldrich, St. Louis, MO). A sparsely sporulating, dematiaceous mitosporic fungus was observed. Fungal plugs were transferred to surface-sterilized detached ‘Alamo’ leaves on sterile filter paper in a moist chamber to increase spore production. Conidia were ovate, oblong, mostly straight to slightly curved, and light to olive-brown with 3 to 10 septa. Conidial dimensions were 12.5 to 17 × 27.5 to 95 (average 14.5 × 72) μm. Conidiophores were light brown, single, multiseptate, and geniculate. Conidial production was polytretic. Morphological characteristics and disease symptoms were similar to those described for Bipolaris oryzae (Breda de Haan) Shoemaker (2). Disease assays were done with 6-week-old ‘Alamo’ switchgrass grown from seed scarified with 60% sulfuric acid and surface-sterilized in 50% bleach. Nine 9 × 9-cm square pots with approximately 20 plants per pot were inoculated with a mycelial slurry (due to low spore production) prepared from cultures grown on potato dextrose agar for 7 days. Cultures were flooded with sterile water and rubbed gently to loosen mycelium. Two additional pots were inoculated with sterile water and subjected to the same conditions to serve as controls. Plants were exposed to high humidity by enclosure in a plastic bag for 72 h. Bags were removed, and plants were incubated at 25/20°C with 50 to 60% relative humidity. During the disease assay, plants were kept in a growth chamber with a 12-h photoperiod of fluorescent and incandescent lighting. Foliar leaf spot symptoms appeared 5 to 14 days post-inoculation for eight of nine replicates. Control plants had no symptoms. Symptomatic leaf tissue was processed and plated as described above. The original fungal isolate and the pathogen recovered in the disease assay were identified using internal transcribed spacer (ITS) region sequences. The ITS region of rDNA was amplified with PCR and primer pairs ITS4 and ITS5 (4). PCR amplicons of 553 bp were sequenced, and sequences from the original isolate and the reisolated pathogen were identical (GenBank Accession No. JQ237248). The sequence had 100% nucleotide identity to B. oryzae from switchgrass in Mississippi (GU222690, GU222691, GU222692, and GU222693) and New York (JF693908). Leaf spot caused by B. oryzae on switchgrass has also been described in North Dakota (1) and was seedborne in Mississippi (3). To our knowledge, this is the first report of B. oryzae from switchgrass in Tennessee. References: (1) D. F. Farr and A. Y. Rossman. Fungal Databases. Systematic Mycology and Microbiology Laboratory, ARS, USDA. Retrieved from http://nt.ars-grin.gov/fungaldatabases/, 28 June 2012. (2) J. M. Krupinsky et al. Can. J. Plant Pathol. 26:371, 2004. (3) M. Tomaso-Peterson and C. J. Balbalian. Plant Dis. 94:643, 2010. (4) T. J. White et al. Pages 315-322 in: PCR Protocols: a Guide to Methods and Applications. M. A. Innis et al. (eds), Acad. Press, San Diego, 1990.


Author(s):  
Shivannegowda Mahadevakumar ◽  
Yelandur Somaraju Deepika ◽  
Kandikere Ramaiah Sridhar ◽  
Kestur Nagaraj Amruthesh ◽  
Nanjaiah Lakshmidevi

Plant Disease ◽  
2019 ◽  
Vol 103 (3) ◽  
pp. 581
Author(s):  
B. Xia ◽  
C. T. Xu ◽  
J. K. Xu ◽  
Y. H. Wu ◽  
Q. Xie ◽  
...  

Mycobiology ◽  
2016 ◽  
Vol 44 (3) ◽  
pp. 187-190 ◽  
Author(s):  
Jung-In Wee ◽  
Jong-Han Park ◽  
Chang-Gi Back ◽  
Young-Hyun You ◽  
Taehyun Chang

Plant Disease ◽  
2019 ◽  
Vol 103 (5) ◽  
pp. 1028
Author(s):  
S. Chen ◽  
D. Yang ◽  
L. Yang ◽  
H. Yuan

Plant Disease ◽  
2014 ◽  
Vol 98 (10) ◽  
pp. 1434-1434
Author(s):  
J.-H. Kwon ◽  
D.-W. Kang ◽  
M.-G. Cheon ◽  
J. Kim

In South Korea, the culture, production, and consumption of blueberry (Vaccinium corymbosum) have increased rapidly over the past 10 years. In June and July 2012, blueberry plants with leaf spots (~10% of disease incidence) were sampled from a blueberry orchard in Jinju, South Korea. Leaf symptoms included small (1 to 5 mm in diameter) brown spots that were circular to irregular in shape. The spots expanded and fused into irregularly shaped, large lesions with distinct dark, brownish-red borders. The leaves with severe infection dropped early. A fungus was recovered consistently from sections of surface-disinfested (1% NaOCl) symptomatic leaf tissue after transfer onto water agar and sub-culture on PDA at 25°C. Fungal colonies were dark olive and produced loose, aerial hyphae on the culture surfaces. Conidia, which had 3 to 6 transverse septa, 1 to 2 longitudinal septa, and sometimes also a few oblique septa, were pale brown to golden brown, ellipsoid to ovoid, obclavate to obpyriform, and 16 to 42 × 7 to 16 μm (n = 50). Conidiophores were pale to mid-brown, solitary or fasciculate, and 28 to 116 × 3 to 5 μm (n = 50). The species was placed in the Alternaria alternata group (1). To confirm the identity of the fungus, the complete internal transcribed spacer (ITS) rDNA region of a representative isolate, AAVC-01, was amplified using ITS1 and ITS4 primers (2). The DNA products were cloned into the pGEM-T Easy vector (Promega, Madison, WI) and the resulting pOR13 plasmid was sequenced using universal primers. The resulting 570-bp sequence was deposited in GenBank (Accession No. KJ636460). Comparison of ITS rDNA sequences with other Alternaria spp. using ClustalX showed ≥99% similarity with the sequences of A. alternata causing blight on Jatropha curcas (JQ660842) from Mexico and Cajannus cajan (JQ074093) from India, citrus black rot (AF404664) from South Africa, and other Alternaria species, including A. tenuissima (WAC13639) (3), A. lini (Y17071), and A. longipes (AF267137). Two base substitutions, C to T at positions 345 and 426, were found in the 570-bp amplicon. Phylogenetic analysis revealed that the present Alternaria sp. infecting blueberry grouped separately from A. tenuissima and A. alternata reported from other hosts. A representative isolate of the pathogen was used to inoculate V. corymbosum Northland leaves for pathogenicity testing. A conidial suspension (2 × 104 conidia/ml) from a single spore culture and 0.025% Tween was spot inoculated onto 30 leaves, ranging from recently emerged to oldest, of 2-year-old V. corymbosum Northland plants. Ten leaves were treated with sterilized distilled water and 0.025% Tween as a control. The plants were kept in a moist chamber with >90% relative humidity at 25°C for 48 h and then moved to a greenhouse. After 15 days, leaf spot symptoms similar to those observed in the field developed on the inoculated leaves, whereas the control plants remained asymptomatic. The causal fungus was re-isolated from the lesions of the inoculated plants to fulfill Koch's postulates. To our knowledge, this is the first report of Alternaria sp. on V. corymbosum in South Korea. References: (1) E. G. Simmons. Page 1797 in: Alternaria: An Identification Manual. CBS Fungal Biodiversity Centre, Utrecht, The Netherlands, 2007. (2) T. J. White et al. Page 315 in: PCR Protocols: A Guide to Methods and Applications. Academic Press, San Diego, 1990. (3) M. P. You et al. Plant Dis. 98:423, 2014.


Plant Disease ◽  
2012 ◽  
Vol 96 (1) ◽  
pp. 148-148 ◽  
Author(s):  
J. Liu ◽  
H. D. Luo ◽  
W. Z. Tan ◽  
L. Hu

Conyza sumatrensis (Asteraceae), an annual or biennial plant, is native to North and South America. It is an invasive, noxious weed that is widespread in southern and southeastern China. It invades farm land and causes great losses to dry land crops, including wheat, corn, and beans. It also reduces biological diversity by crowding out native plants in the infested areas (3,4). During a search for fungal pathogens that could serve as potential biological control agents of C. sumatrensis, a leaf spot disease was observed in 2010 in Chongqing, China. An isolate (SMBC22) of a highly virulent fungus was obtained from diseased leaves. Pathogenicity tests were performed by placing 6-mm-diameter mycelial disks of 7-day-old potato dextrose agar (PDA) cultures of SMBC22 on leaves of 15 healthy greenhouse-grown plants of C. sumatrensis; the same number of control plants was treated with sterile PDA disks. Treated plants were covered with plastic bags for 24 h and maintained in a growth chamber with daily average temperatures of 24 to 26°C, continuous light (3,100 lux), and high relative humidity (>90%). Lesions similar to those observed in the field were first obvious on the SMBC22-inoculated leaves 3 days after inoculation. Symptoms became severe 7 to 9 days after inoculation. Control plants remained healthy. The fungus was reisolated from inoculated and diseased leaves and it was morphologically the same as SMBC22. The pathogenicity test was conducted three times. A survey of 10 southern and southeastern Chinese provinces revealed that the disease was widespread and it attacked leaves and stems of seedlings and mature plants of C. sumatrensis. Lesions on leaves were initially small, circular, and water soaked. The typical lesion was ovoid or fusiform, dark brown, and surrounded by a yellow halo. The spots coalesced to form large lesions and plants were often completely blighted. Fungal colonies of SMBC22 on PDA plates were initially white and turned dark gray. Colonies were circular with smooth edges with obvious rings of pycnidia on the surface. Aerial hyphae were short and dense. Pycnidia, black and immersed or semi-immersed in the medium, were visible after 12 days of incubation. Pycnidia were 72 to 140 μm in diameter. Conidia were produced in the pycnidia and were hyaline, unicellular, ellipsoidal, and 4.4 to 6.1 × 1.6 to 2.2 μm. To confirm identification of the fungus, genomic DNA was extracted from mycelia of a 7-day-old culture on PDA at 25°C (2). The internal transcribed spacer (ITS) gene of rDNA was amplified using primers ITS4/ITS5. The gene sequence was 524 bp long and registered in NCBI GenBank (No. HQ645974). BLAST analysis showed that the current sequence had 99% homology to an isolate of Phoma macrostoma (DQ 404792) from Cirsium arvense (Canada thistle) in Canada and reported to cause chlorotic symptoms on that host plant (1). To our knowledge, this is the first report of P. macrostoma causing disease on C. sumatrensis in China. P. macrostoma, thought of as a biocontrol agent of broadleaf weeds in Canada, has been patented in the United States. The current isolate of P. macrostoma is considered as a potential biocontrol agent of C. sumatrensis. References: (1) P. R. Graupner et al. J. Nat. Prod. 66:1558, 2004. (2) S. Takamatsu et al. Mycoscience 42:135, 2001. (3) W. Z. Tan et al. Page 177 in: Manual of Emergency Control Technology Invasive Pests in China. G. L. Zhang, ed. Science Press, Beijing, 2010. (4) C. Wang et al. J. Wuhan Bot. Res. 28:90, 2010.


Sign in / Sign up

Export Citation Format

Share Document