Application of the generalized body-fixed coordinate system for the wave-body interaction problem of a small-depth elastic structure in head seas

2021 ◽  
Vol 33 (6) ◽  
pp. 1255-1270
Author(s):  
Kyeonguk Heo ◽  
Masashi Kashiwagi
1973 ◽  
Vol 28 (2) ◽  
pp. 206-215
Author(s):  
Hanns Ruder

Basic in the treatment of collective rotations is the definition of a body-fixed coordinate system. A kinematical method is derived to obtain the Hamiltonian of a n-body problem for a given definition of the body-fixed system. From this exact Hamiltonian, a consequent perturbation expansion in terms of the total angular momentum leads to two exact expressions: one for the collective rotational energy which has to be added to the groundstate energy in this order of perturbation and a second one for the effective inertia tensor in the groundstate. The discussion of these results leads to two criteria how to define the best body-fixed coordinate system, namely a differential equation and a variational principle. The equivalence of both is shown.


Author(s):  
Yan-Lin Shao

A stabilized Higher-Order Boundary Element Method (HOBEM) based on cubic shape functions is presented to solve the linear wave-structure interaction with the presence of steady or slowly varying velocities. The m-terms which involves second derivatives of local steady flow are difficult to calculate accurately on structure surfaces with high curvatures. They are also not integrable at the sharp corners. A formulation of the Boundary Value Problem (BVP) in a body-fixed coordinate system is thus adopted, which avoids the calculation of the m-terms. The use of body-fixed coordinate system also avoid the inconsistency in the traditional perturbation method when 2nd order slowly-vary motions are larger than the linear motions. The stabilized numerical method presented in this paper is based on streamline integration and biased differencing scheme along the streamlines. The presence of convective terms in the kinematic and dynamic free surface conditions will lead to instable solution if the explicit method is used. Thus a fully implicit scheme is used in this paper for the time integration of kinematic and dynamic free surface conditions. In an implicit scheme, solution of an additional matrix equation is normally required due to the fact that the presence of convective terms are approximated using the variables at current time step rather than the previous time steps only. A method that avoids solving such matrix equation is presented in this paper, which will reduce the computational efforts in the implicit method. The methodology is applicable on unstructured meshes. It can also be used in general second order wave-structure interaction analysis with presence of steady or slowly-varying velocities.


2019 ◽  
Vol 192 ◽  
pp. 106366
Author(s):  
Tian-Long Mei ◽  
Guillaume Delefortrie ◽  
Manasés Tello Ruiz ◽  
Evert Lataire ◽  
Marc Vantorre ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document