Heterothallism among spatiotemporally diverse Colletotrichum lindemuthianum isolates and its implication in common bean anthracnose resistance breeding in the Northwestern Himalayan region

Author(s):  
Aasiya Nabi ◽  
Aqleema Banoo ◽  
Rovidha Saba Rasool ◽  
M. D. Shah ◽  
P. N. Sharma ◽  
...  
2011 ◽  
Vol 101 (6) ◽  
pp. 757-764 ◽  
Author(s):  
Ana Campa ◽  
Ramón Giraldez ◽  
Juan José Ferreira

Resistance to the eight races (3, 7, 19, 31, 81, 449, 453, and 1545) of the pathogenic fungus Colletotrichum lindemuthianum (anthracnose) was evaluated in F3 families derived from the cross between the anthracnose differential bean cultivars Kaboon and Michelite. Molecular marker analyses were carried out in the F2 individuals in order to map and characterize the anthracnose resistance genes or gene clusters present in Kaboon. The analysis of the combined segregations indicates that the resistance present in Kaboon against these eight anthracnose races is determined by 13 different race-specific genes grouped in three clusters. One of these clusters, corresponding to locus Co-1 in linkage group (LG) 1, carries two dominant genes conferring specific resistance to races 81 and 1545, respectively, and a gene necessary (dominant complementary gene) for the specific resistance to race 31. A second cluster, corresponding to locus Co-3/9 in LG 4, carries six dominant genes conferring specific resistance to races 3, 7, 19, 449, 453, and 1545, respectively, and the second dominant complementary gene for the specific resistance to race 31. A third cluster of unknown location carries three dominant genes conferring specific resistance to races 449, 453, and 1545, respectively. This is the first time that two anthracnose resistance genes with a complementary mode of action have been mapped in common bean and their relationship with previously known Co- resistance genes established.


2018 ◽  
Vol 43 (3) ◽  
pp. 271-277 ◽  
Author(s):  
Margot O. Falleiros ◽  
Suellen F. Mota ◽  
Alex N. Ferreira ◽  
Elaine A. de Souza

1997 ◽  
Vol 20 (1) ◽  
pp. 59-62 ◽  
Author(s):  
M.C. Gonçalves-Vidigal ◽  
Antônio A. Cardoso ◽  
Clibas Vieira ◽  
Luiz S. Saraiva

Bean (Phaseolus vulgaris) lines P.I. 207262 and AB 136, both resistant to delta and kappa races of Colletotrichum lindemuthianum, were crossed with Michelite, Dark Red Kidney, and Perry Marrow, susceptible to both races, and with Cornell 49-242, resistant to delta and susceptible to kappa. F1 and F2 reactions demonstrated that P.I. 207262 carries duplicate dominant genes for resistance to the delta race; AB 136 carries a dominant gene. These resistance genes are independent of the Are gene from Cornell 49-242. With respect to the kappa race, F1 and F2 data showed that the resistance controlled by P.I. 207262 and by AB 136 depends on a single dominant gene. Complementary factors were involved with AB 136 resistance to the delta race and with P.I. 207262 resistance to kappa.


2000 ◽  
Vol 43 (5) ◽  
pp. 479-485 ◽  
Author(s):  
Juliana P. Poletine ◽  
M.C. Gonçalves-Vidigal ◽  
Pedro S. Vidigal Filho ◽  
Carlos Alberto Scapim ◽  
Lucas Silvério ◽  
...  

The cultivars, AB 136 and G 2333 both resistant to Colletotrichum lindemuthianum races 69 and 453, were crossed with the cultivars Michelite and Perry Marrow (susceptible to both races), with Dark Red Kidney and Cornell 49242 (resistant to both races) and F1 and F2 generations were obtained. Plants were inoculated using a spore suspension at 1.2 x 10(6) concentration. The reaction of F1 and F2 populations showed that Dark Red Kidney, Cornell 49242 and AB 136 cultivars had the dominant genes A (Co-1), Are (Co-2) and Co-6, respectively, was conferring resistance to races 69 and 453. The segregation data obtained from F2 populations indicated that G 2333 carried two dominant resistance genes Co-5 gene and another one Co-7 for 69 and 453 races. The dominant genes in G 2333 and its resistance to C. lindemuthianum race could be transferred to provide anthracnose resistance to susceptible cultivars relatively easy.


2020 ◽  
Vol 43 ◽  
pp. e44910
Author(s):  
João Ricardo Silva Marcon ◽  
Maria Celeste Gonçalves Vidigal ◽  
Jean Fausto Carvalho Paulino ◽  
Pedro Soares Vidigal Filho ◽  
Marcela Coêlho

Anthracnose, which is caused by the fungus Colletotrichum lindemuthianum, is one of the most widespread and important diseases of the common bean (Phaseolus vulgaris L.) in the world. The objective of the present study was to characterize the genetic resistance of the Beija Flor cultivar by inheritance and to conduct allelism tests. The inheritance test was conducted in the F2 population derived from the Beija Flor (resistant) x TU (susceptible) cross inoculated with race 2047 of C. lindemuthianum. Furthermore, allelism tests exhibited a fitted segregation ratio of 15R:1S, thereby indicating the independence of the Beija Flor gene from the following previously characterized genes: Co-1, Co-2, Co-4, Co-42, Co-6, Co-12, Co-14, Co-15, and Co-Pe. Based on the aforementioned results, we are proposing the symbol Co-Bf to designate the new anthracnose resistance gene in the Brazilian Andean common bean cultivar Beija Flor. This cultivar is an important source of resistance to C. lindemuthianum that should provide a valuable contribution to the common bean breeding program for anthracnose resistance.


Author(s):  
Larissa Fernanda Sega Xavier ◽  
Juliana Parisotto Poletine ◽  
Maria Celeste Gonçalves-Vidigal ◽  
Giseli Valentini ◽  
Pedro Soares Vidigal Filho ◽  
...  

Plant Disease ◽  
1997 ◽  
Vol 81 (9) ◽  
pp. 996-998 ◽  
Author(s):  
Ana Lilia Alzate-Marin ◽  
Gilson Soares Baía ◽  
Trazilbo José de Paula ◽  
Geraldo Assis de Carvalho ◽  
Everaldo Gonçalves de Barros ◽  
...  

Inheritance of anthracnose resistance of the common bean (Phaseolus vulgaris L.) differential cultivar AB 136 to races 89, 64, and 73 (binary system designation) was studied in crosses with the susceptible differential cultivars Michelite (race 89), Mexico 222 (race 64), and Cornell 49-242 (race 73). In each cross two progenitors, the F1, F2, and backcross-derived plants were inoculated with the respective race under environmentally controlled greenhouse conditions. The results indicate that single dominant gene(s) control resistance to races 89 and 64, giving a segregation ratio of 3:1 in the F2, 1:0 in the backcrosses to AB 136, and 1:1 in the backcross to Michelite (race 89), and to Mexico 222 (race 64). For race 73, the following segregation ratios between resistant and susceptible plants were observed: 13:3 in the F2, 1:0 in the backcross to AB 136, and 1:1 in the backcross to Cornell 49-242. Such results suggest that two independent genes may determine resistance of AB 136 to race 73, one dominant (Co-6) and one recessive that is proposed to be assigned co-8. Genotypes Co-6_ or co-8 co-8 would condition resistance, whereas susceptibility would be present in genotypes co-6 co-6 Co-8_. Given the dominant nature of anthracnose resistance genes present in line AB 136 and its resistance to 25 races of Colletotrichum lindemuthianum identified in Brazil by other researchers, we included this cultivar as one of the donor parents in our molecular marker-assisted backcross breeding program, to develop common bean cultivars resistant to anthracnose and adapted to Central Brazil.


Sign in / Sign up

Export Citation Format

Share Document