differential cultivars
Recently Published Documents


TOTAL DOCUMENTS

85
(FIVE YEARS 10)

H-INDEX

22
(FIVE YEARS 1)

2021 ◽  
Vol 12 ◽  
Author(s):  
Sascha Jenkins ◽  
Andrew Taylor ◽  
Alison C. Jackson ◽  
Andrew D. Armitage ◽  
Helen J. Bates ◽  
...  

Fusarium oxysporum is a soilborne fungal plant pathogen responsible for causing disease in many economically important crops with “special forms” (formae speciales) adapted to infect specific plant hosts. F. oxysporum f. sp. pisi (FOP) is the causal agent of Fusarium wilt disease of pea. It has been reported in every country where peas are grown commercially. Disease is generally controlled using resistant cultivars possessing single major gene resistance and therefore there is a constant risk of breakdown. The main aim of this work was to characterise F. oxysporum isolates collected from diseased peas in the United Kingdom as well as FOP isolates obtained from other researchers representing different races through sequencing of a housekeeping gene and the presence of Secreted In Xylem (SIX) genes, which have previously been associated with pathogenicity in other F. oxysporum f. spp. F. oxysporum isolates from diseased United Kingdom pea plants possessed none or just one or two known SIX genes with no consistent pattern of presence/absence, leading to the conclusion that they were foot-rot causing isolates rather than FOP. In contrast, FOP isolates had different complements of SIX genes with all those identified as race 1 containing SIX1, SIX6, SIX7, SIX9, SIX10, SIX11, SIX12, and SIX14. FOP isolates that were identified as belonging to race 2 through testing on differential pea cultivars, contained either SIX1, SIX6, SIX9, SIX13, SIX14 or SIX1, SIX6, SIX13. Significant upregulation of SIX genes was also observed in planta over the early stages of infection by different FOP races in pea roots. Race specific SIX gene profiling may therefore provide potential targets for molecular identification of FOP races but further research is needed to determine whether variation in complement of SIX genes in FOP race 2 isolates results in differences in virulence across a broader set of pea differential cultivars.


Plant Disease ◽  
2021 ◽  
Author(s):  
Bennett Harrelson ◽  
Bikash Ghimire ◽  
Robert Kemerait ◽  
Albert Culbreath ◽  
Zenglu Li ◽  
...  

Frogeye leaf spot (FLS), caused by the fungal pathogen Cercospora sojina K. Hara, is a foliar disease of soybean (Glycine max L. (Merr.)) responsible for yield reductions throughout the major soybean producing regions in the world. In the United States, management of FLS relies heavily on the use of resistant cultivars and in-season fungicide applications, specifically within the class of quinone outside inhibitors (QoIs), which has resulted in the development of fungicide resistance in many states. In 2018 and 2019, 80 isolates of C. sojina were collected from six counties in Georgia and screened for QoI fungicide resistance using molecular and in vitro assays, with resistant isolates being confirmed from three counties. Additionally, 50 isolates, including a “baseline isolate” with no prior fungicide exposure, were used to determine the percent reduction of mycelial growth to two fungicides, azoxystrobin and pyraclostrobin, at six concentrations: 0.0001, 0.001, 0.01, 0.1, 1, and 10 g ml-1. Mycelial growth observed for resistant isolates varied significantly from both the sensitive isolates and the baseline isolate for azoxystrobin concentrations of 10, 1, 0.1, and 0.01 g ml-1 and for pyraclostrobin concentrations of 10, 1, 0.1, 0.01 and 0.001 g ml-1. Moreover, 40 isolates were used to evaluate pathogen race on six soybean differential cultivars by assessing susceptible or resistant reactions. Isolate reactions suggested 12 races of C. sojina present in Georgia, four of which have not been previously described. Species richness indicators (rarefaction and abundance-based coverage estimator - ACE) indicated that within-county C. sojina race numbers were undersampled in the present study, suggesting the potential for the presence of either additional undescribed races or known but unaccounted for races in Georgia. However, no isolates were pathogenic on differential cultivar ‘Davis’, carrying the Rcs3 resistance allele, suggesting the gene is still an effective source of resistance in Georgia.


Author(s):  
Mary Block ◽  
Michele S. Wiseman ◽  
David H. Gent

Powdery mildew is one of the most destructive diseases of hop. Host resistance is a most efficient means of managing the disease, but resistance may not be durable. The cultivar Strata was developed by Oregon State University, and the patent application stated the plant was resistant to powdery mildew based on initial greenhouse screening and 8 years of observations at three locations in western Oregon. In 2019, powdery mildew colonies were reported in a commercial yard of Strata near Woodburn, Oregon. Two clonal isolates of Podosphaera macularis were isolated via single-chain transfers from colonies and characterized by inoculating each of seven differential cultivars. Cultivars with Rb, R3, and R5 were susceptible to the isolates. The susceptibility of Strata to powdery mildew was characterized by inoculating seven isolates of P. macularis with known virulences onto leaves of Strata. Sporulation appeared on Strata leaves with all of the differential isolates independent of their specific virulence, but only at trace levels with isolates possessing V6-virulence. Strata-derived isolates were phenotypically indistinguishable from Cascade-adapted isolates when inoculated onto the cultivars Cascade, Strata, and Symphony, as only Strata-derived and Cascade-adapted isolates could cause severe disease on Cascade and Strata. Like Cascade-adapted isolates, Strata-derived isolates also lack virulence on hop plants possessing the R-gene R6. These findings should inform both disease risk assessment in the field and future breeding tactics and strategies involving Strata. Further characterization of Strata is warranted to determine if its resistance is under the same genetic control as Cascade.


2020 ◽  
Vol 110 (5) ◽  
pp. 1105-1116
Author(s):  
David H. Gent ◽  
Briana J. Claassen ◽  
David M. Gadoury ◽  
Niklaus J. Grünwald ◽  
Brian J. Knaus ◽  
...  

Powdery mildew, caused by Podosphaera macularis, is one of the most important diseases of hop. The disease was first reported in the Pacific Northwestern United States, the primary hop-growing region in this country, in the mid-1990s. More recently, the disease has reemerged in newly planted hopyards of the eastern United States, as hop production has expanded to meet demands of local craft brewers. The spread of strains virulent on previously resistant cultivars, the paucity of available fungicides, and the potential introduction of the MAT1-2 mating type to the western United States, all threaten sustainability of hop production. We sequenced the transcriptome of 104 isolates of P. macularis collected throughout the western United States, eastern United States, and Europe to quantify genetic diversity of pathogen populations and elucidate the possible origins of pathogen populations in the western United States. Discriminant analysis of principal components grouped isolates within three to five geographic populations, dependent on stringency of grouping criteria. Isolates from the western United States were phenotyped and categorized into one of three pathogenic races based on disease symptoms generated on differential cultivars. Western U.S. populations were clonal, irrespective of pathogenic race, and grouped with isolates originating from Europe. Isolates originating from wild hop plants in the eastern United States were genetically differentiated from all other populations, whereas isolates from cultivated hop plants in the eastern United States mostly grouped with isolates originating from the west, consistent with origins from nursery sources. Mating types of isolates originating from cultivated western and eastern U.S. hop plants were entirely MAT1-1. In contrast, a 1:1 ratio of MAT1-1 and MAT1-2 was observed with isolates sampled from wild plants or Europe. Within the western United States a set of highly differentiated loci were identified in P. macularis isolates associated with virulence to the powdery mildew R-gene R6. The weight of genetic and phenotypic evidence suggests a European origin of the P. macularis populations in the western United States, followed by spread of the pathogen from the western United States to re-emergent production regions in the eastern United States. Furthermore, R6 compatibility appears to have been selected from an extant isolate within the western United States. Greater emphasis on sanitation measures during propagation and quarantine policies should be considered to limit further spread of novel genotypes of the pathogen, both between and within production areas.


2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Shyam L. Kandel ◽  
Amanda M. Hulse-Kemp ◽  
Kevin Stoffel ◽  
Steven T. Koike ◽  
Ainong Shi ◽  
...  

Plant Disease ◽  
2019 ◽  
Vol 103 (11) ◽  
pp. 2759-2763
Author(s):  
Yaling Zhang ◽  
Jinyan Wang ◽  
Yongxiang Yao ◽  
Xuehui Jin ◽  
James Correll ◽  
...  

Rice blast caused by the fungus Magnaporthe oryzae is one of the most destructive diseases of rice. Its control through the deployment of host resistance genes would be facilitated by understanding the pathogen’s race structure. Here, dynamics of race structures in this decade in Heilongjiang province were characterized by Chinese differential cultivars. Two patterns of dynamics of the race structures emerged: both race diversity and population-specific races increased gradually between 2006 and 2011, but they increased much more sharply between 2011 and 2015, with concomitant falls in both the population-common races and dominant races. Four races (ZD1, ZD3, ZD5, and ZE1) were among the top three dominant races over the whole period, indicating that the core of the race structure remained stable through this decade. On the host side, the composition of resistance in the cultivar differential set could be divided in two: the three indica-type entries of the differential set expressed a higher level of resistance to the population of M. oryzae isolates tested than did the four japonica-type entries. The cultivars Tetep and Zhenlong 13 as well as two additional resistance genes α and ε were confirmed as the most promising donors of blast resistance for the local rice improvement programs. [Formula: see text]Copyright © 2019 The Author(s). This is an open-access article distributed under the CC BY-NC-ND 4.0 International license .


Plant Disease ◽  
2019 ◽  
Vol 103 (9) ◽  
pp. 2353-2358 ◽  
Author(s):  
Claudia Diaz ◽  
Felipe Cevallos ◽  
John Damicone

Blackleg, caused by the fungus Leptosphaeria maculans, is a widespread disease of winter canola (Brassica napus) in Oklahoma and Kansas. Deployment of genetic resistance is the primary strategy for managing blackleg. Resistance genes (Rlm) in canola interact with avirulence genes in the fungus (AvrLm) in a gene-for-gene manner. Little is known about the diversity and frequency of avirulence genes and the race structure in the region. Isolates of Leptosphaeria spp. were collected from diseased leaves in nine counties in Oklahoma and one county in Kansas from 2009 to 2013. Based on pathogenicity and PCR amplification of mating type and species-specific internal transcribed spacer loci, most isolates (n = 90) were L. maculans. The presence of avirulence genes was evaluated using phenotypic interactions on cotyledons of differential cultivars with Rlm1, Rlm2, Rlm3, and Rlm4 and amplification of AvrLm1, AvrLm4-7, and AvrLm6 by PCR. The avirulence alleles AvrLm6 and AvrLm7 were present in the entire L. maculans population. AvrLm1 was found in 34% of the population, AvrLm2 in 4%, and AvrLm4 in only 1%. A total of five races, defined as combinations of avirulence alleles, were identified that included AvrLm1-2-6-7, AvrLm2-6-7, AvrLm4-6-7, AvrLm1-6-7, and AvrLm6-7. Races virulent on the most Rlm genes, AvrLm1-6-7 at 32% and AvrLm6-7 at 62%, were predominant. Defining the avirulence allele frequency and race structure of L. maculans should be useful for the identification and development of resistant cultivars and hybrids for blackleg management in the region. The results suggest that Rlm6 and Rlm7 would be effective, although their deployment should be integrated with quantitative resistance and cultural practices, such as crop rotation, that limit selection pressure on Rlm genes.


2019 ◽  
Vol 79 (2) ◽  
pp. 174-180
Author(s):  
Roberta L. Vidal ◽  
Renato S. Soares ◽  
Bruna F. Kobayashi ◽  
Carolina A. Franco ◽  
Marcus V. Marin ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document